Synthesis, Crystal Structure and Non-covalent Interactions Analysis of Novel N-substituted Thiosemicarbazone

Xing Zhang , Jie Huang , Yu Zhang , Fan Qi , Sifan Wang , Jirong Song

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 471 -477.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 471 -477. DOI: 10.1007/s40242-019-8354-8
Article

Synthesis, Crystal Structure and Non-covalent Interactions Analysis of Novel N-substituted Thiosemicarbazone

Author information +
History +
PDF

Abstract

(E)-1-(4-Fluorobenzylidene)-4-(4-ethylphenyl)thiosemicarbazone was synthesized via the reaction of 4-(4-ethylphenyl)thiosemicarbazide and 4-fluorobenzaldehyde. The title compound was characterized by FTIR, 1H and 13C NMR, mass spectrometry and elemental analysis techniques. Structural property of the title compound was displayed by the X-ray single crystal diffraction. The title compound crystallized in triclinic space group $P\overline 1$ with a=0.6494(4) nm, b=0.7971(5) nm, c=1.5492(10) nm, α=83.690(11)°, β=84.185(10)°, γ=84.348(11)°, molecular formula C16H16FN3S, M r=301.39, V=0.7868(9) nm3, Z=2, D c=1.272 g/cm3, F(000)=316, μ=0.213 mm−1, S=1.02, R=0.0513, and ωR[I>2σ(I)]=0.1662. The intermolecular interactions in the crystal structure were explained using the Hirshfeld surface and their associated two-dimensional fingerprint plots. The title compound showed C—H⋯S(1−x, −y, −z) and N—H⋯S(1−x, −y, −z) intermolecular interactions, and formed the supramolecular self-assemblies through $\overline G $ and ${\rm{R}}_2^2(8)$ ring motifs. Shape index and curvedness were performed to further understand some unique weak interactions, for instance, the weak ππ stacking contacts in molecular structure with different characteristic regions. Besides, the reduced density gradient(RDG) function provided a real-space function for discussing non-covalent interactions within molecule, such as hydrogen bonds, weak vdW interactions and attractive or repulsive effects.

Keywords

Novel N-substituted thiosemicarbazone / Non-covalent interaction / Reduced desity gradient(RDG) function / Hirshfeld surface analysis

Cite this article

Download citation ▾
Xing Zhang, Jie Huang, Yu Zhang, Fan Qi, Sifan Wang, Jirong Song. Synthesis, Crystal Structure and Non-covalent Interactions Analysis of Novel N-substituted Thiosemicarbazone. Chemical Research in Chinese Universities, 2019, 35(3): 471-477 DOI:10.1007/s40242-019-8354-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Salman A K, Praveen K. Eur. J. Med. Chem., 2008, 43: 2029.

[2]

Vijey A M, Shiny G, Vaidhyalingam V. J. Arkvioc., 2008, 41: 187.

[3]

Rauf M K, Talib A, Badshah A, Zaib S, Shoaid K, Floerke U, Imtiazed-Din U, Iqbal J. Eur. J. Med. Chem, 2013, 70: 487.

[4]

Saeed A, Shaheen U, Hameed A, HaiderNaqvi S Z. J. Flour. Chem., 2009, 130: 1028.

[5]

Saeed A, Rashid N, Jones P G, Al M, Hussain R. Eur. J. Med. Chem., 2010, 45: 1323.

[6]

Andreas J K. Eur. J. Med. Chem., 2011, 46: 1656.

[7]

Wang B, Ma Y, Xiong L, Li Z. Chin. J. Chem., 2012, 30: 815.

[8]

Bielenica A, Stefańska J, Stępień K, Napiórkowska A, Augustynowicz-Kopeó E, Sanna G, Madeddu S, Boi S, Giliberti G, Wrzosek M, Struga M. Eur. J. Med. Chem., 2015, 101: 111.

[9]

Rauf M K, Zaib S, Talib A, Ebihara A, Badshah A, Bolte M, Iqbal J. Bioorg. Med. Chem. Lett., 2016, 24: 4452.

[10]

Samir G, Anup K M, Gitika B, Khan M M, Khanna A K. Med. Chem. Lett., 2009, 19: 3863.

[11]

Dipankar M, Subhendu N, Michael G B D, Shyamal K C. J. Polyhedron., 2005, 24: 1861.

[12]

Tevfik A, Erdal O. J. Termochim. Acta, 1995, 254: 371.

[13]

Nez-Montenegro A, Carballo R, Ezequiel M, Vázquez-López J. Polyhedron., 2009, 28: 3915.

[14]

Aridoss G, Amirthaganesan S, Kim M S, Kim J T, Jeong Y T. Eur. J. Med. Chem., 2009, 44: 3499.

[15]

Neelam B, Fareeda A, Manna R M, Amir A. J. Bioorg. Med. Chem. Lett., 2004, 12: 4679.

[16]

Kakul H, Mohammad A, Amir A. Eur. J. Med. Chem, 2007, 35: 1300.

[17]

Kakul H, Abdul R, Amir A. Eur. J. Med. Chem., 2008, 43: 2016.

[18]

Lobana T S, Sharma R, Bawa G, Khanna S. Coord. Chem. Rev., 2009, 253: 977.

[19]

Guo Z L, Richardson D R, Kalinowski D S, Kovacevic Z, Tan-Un K C, Chan C F G. Journal of Hematology & Oncology, 2016, 1: 98.

[20]

Bomfim L F O, Barbosa R S, Burgos C A E, Rodrigues B L, Teixeira R L. J. Mol. Struct., 2017, 1150: 44.

[21]

Saeed A, Bolte M, Erben M F, Pérez H. CrystEngComm, 2015, 17: 7551.

[22]

Cairo R R, Stevens A M P, Oliveira T D D, Batista A A, Castellano E E, Duque J, Soria D B, Fantoni A C, Corrêa R S, Erben M F. Spectrochim. Acta A, 2017, 176: 8.

[23]

McKinnon J J, Jayatilaka D, Spackman M A. Chem. Commun., 2007, 37: 3814.

[24]

Spackman M A, Jayatilaka D. Cryst. Eng. Comm., 2009, 11: 19.

[25]

Spackman M A. Phys. Scr., 2013, 87: 48.

[26]

McKinnon J J, Spackman M A, Mitchell A S. Acta Crystallogr, 2004, 60: 627.

[27]

McKinnon J J, Fabbiani F P A, Spackman M A. Cryst. Growth Des., 2007, 7: 755.

[28]

Seth S K, Saha I, Estarellas C, Frontera A, Kar T, Mukhopadhyay S. Cryst. Growth. Des., 2011, 11: 3250.

[29]

Saeed A, Khurshid A, Bolte M, Fantoni A C, Erben M F. Spectrochim. Acta. A, 2015, 143: 59.

[30]

Johnson E R, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A J, Yang W T. J. Am. Chem. Soc., 2010, 132: 6498.

[31]

Meyer E A, Castellano P K, Diederich F. Angew. Chem. Int. Ed., 2003, 42: 1210.

[32]

Steiner T. Angew. Chem. Int. Ed., 2002, 41: 48.

[33]

Erdelyi M. Chem. Soc. Rev., 2012, 41: 3547.

[34]

Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G. Chem. Soc. Rev., 2011, 40: 2267.

[35]

Gumus I U, Solmaz, Binzet G, Keskin E, Arslan B, Arslan H. J. Mol. Struct., 2018, 1157: 78.

[36]

Samanta T, Dey L, Dinda J, Chattopadhyay S K, Seth S K. J. Mol. Struct., 2014, 1068: 58.

[37]

Sheldrick GM. SHELXL-97, Program for X-ray Crystal Structure Refinement, 1997, Göttingen: University of Göttingen.

[38]

Spek A L. Acta Crystallogr., 2009, D65: 148.

[39]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, AleLaham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 09. Revision D.01, 2009, Wallingford, CT: Gaussian Inc..

[40]

Frisch M J, Pople J A, Binkley J S. J. Chem. Phys., 1984, 80: 3265.

[41]

Wolff S K, Grimwood D J, McKinnon J J, Turner M J, Jayatilaka D, Spackman M A. Crystal Explorer Version 3.1., 2012, Perth: University of Western Australia.

[42]

Qiao L, Huang J, Hu W, Zhang Y, Guo J J, Cao W L, Miao K H, Qin B F, Song J R. J. Mol. Struct., 2017, 1139: 149.

[43]

Qiao L, Zhang Y, Hu W, Guo J J, Cao W L, Ding Z M, Guo Z W, Fan A, Song J R, Huang J. J. Mol. Struct, 2017, 1141: 309.

[44]

Qiao L, Huang J, Hu W, Zhang Y, Qin B F, Song J R, Gao Y. Chin. J. Struct. Chem., 2017, 11: 1759.

[45]

Zhang Y, Hu W, Qiao L, Zhang X, Song J R, Huang J. Chin. J. Struct. Chem., 2018, 37: 693.

[46]

Kinnon M J J, Spackman M A, Mitchell A S. Acta Crystallogr. Sect. B: Struct. Sci., 2004, 60: 627.

[47]

Manna P, Seth S K, Das A, Hemming J, Prendergast R, Helliwell M, Choudhury S R, Frontera A, Mukhopadhyay S. Inorg. Chem., 2012, 51: 3557.

[48]

Sun Y, Fu S, Zhang J, Wang X, Wang D. Acta Cryst., 2009, 65: 237.

[49]

Bourosh P N, Revenko M D, Gdaniec M, Stratulat E F, Simonov Y A. J. Struct. Chem., 2009, 50: 510.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/