Combined QSAR/QSPR, Molecular Docking, and Molecular Dynamics Study of Environmentally Friendly PBDEs with Improved Insulating Properties

Sicheng Liu , Shijun Sun

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 478 -484.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 478 -484. DOI: 10.1007/s40242-019-8353-9
Article

Combined QSAR/QSPR, Molecular Docking, and Molecular Dynamics Study of Environmentally Friendly PBDEs with Improved Insulating Properties

Author information +
History +
PDF

Abstract

To improve the insulating properties of polybrominated diphenyl ethers(PBDEs), we studied the molecular structures and energy gap(E g) values of 209 PBDEs using a three-dimensional quantitative structure-activity relationship(3D-QSAR) model, molecular docking, and molecular dynamics. We also analyzed the interaction mechanisms of PBDEs using a 2D-QSAR model, molecular substitution characteristics, and molecular docking. The 3D-QSAR model showed that the 2-, 4-, 5-, and 6-positions significantly influenced the PBDE insulating properties. Using BDE-34 as a template molecule, we designed six derivatives with 0.47%—28.44% higher insulation than BDE-34. Compared with BDE-34, the stability and flame retardancy of the above six derivatives were not adversely affected. These derivatives, except for 2,6-cyanomethyl-BDE, 2-cyanomethyl-BDE, and 2-aminomethyl-BDE, were more toxic and biodegradable than BDE-34, but showed weaker bioaccumulation and migration abilities than BDE-34. Mechanism analysis showed that the highest occupied orbital energy, the most negative charge, and the dipole moment were the main quantitative parameters that affected the PBDE insulating properties. PBDE insulation gradually decreased as the number of Br atoms increased. The level of similarity between the substitution patterns on the two benzene rings was significantly correlated with PBDE insulation, with hydrophobic groups having a more significant effect on PBDE insulation.

Keywords

Polybrominated diphenyl ether / High insulation / Three-dimensional quantitative structure-activity relationship / Molecular docking / Molecular dynamics / Molecular modification

Cite this article

Download citation ▾
Sicheng Liu, Shijun Sun. Combined QSAR/QSPR, Molecular Docking, and Molecular Dynamics Study of Environmentally Friendly PBDEs with Improved Insulating Properties. Chemical Research in Chinese Universities, 2019, 35(3): 478-484 DOI:10.1007/s40242-019-8353-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou J., Chen Q. S., Huang S. X., Wang Y., Zou P. Y. National Symposium on Insulation Materials and Insulation Technology, 2010.

[2]

Liu X. Science and Technology Innovation, 2010, 27: 30.

[3]

Stiborova H., Vrkoslavova J., Lovecka P., Pulkrabova J., Hradkova P., Hajslova J., Demnerova K. Chemosphere, 2015, 118: 315.

[4]

Zhang X., Gao Y. J., Yan C. Z. Ecology and Environmental Sciences, 2009, 18: 761.

[5]

Aznar-Alemany Ò., Aminot Y., Vilà-Cano J., Köck-Schulmeyer M., Readman W., Marques A., Godinho L., Botteon E., Ferrari F., Boti V., Albanis T., Eljarrat E., Barceló D. Science of the Total Environment, 2018, 612: 492.

[6]

McDonald T. A. Chemosphere, 2002, 46: 745.

[7]

Schecter A., Pavuk M., Päpke O., Ryan J., Birnbaum L., Rosen R. Environmental Health Perspectives, 2003, 111: 1723.

[8]

Christensen H., Glasius M., Pécseli M., Platz J., Pritzl G. Chemosphere, 2002, 47: 631.

[9]

Parolini M., Guazzoni N., Binelli A., Tremolada P. Archives of Environmental Contamination & Toxicology, 2012, 63: 29.

[10]

Stoker T. E., Cooper R. L., Lambright C. S., Wilson V. S., Furr J., Gray L. E. Toxicology & Applied Pharmacology, 2005, 207: 78.

[11]

Eriksson P., Fischer C., Fredriksson A. Toxicological Sciences, 2006, 94: 302.

[12]

Wu W., Nie F. Q., Zhai J. H. Ecology and Environmental Sciences, 2009, 18: 408.

[13]

Usenko C. Y., Robinson E. M., Usenko S., Brooks B. W., Bruce E. D. Environmental Toxicology & Chemistry, 2011, 30: 1865.

[14]

Gu W. W., Chen Y., Li Y. Bulletin of Environmental Contamination & Toxicology, 2017, 99: 276.

[15]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuta R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth J. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D. Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT, 2009.

[16]

Shi J. Q., Qu R. J., Feng M. B., Wang X. H., Wang L. S., Yang S. G., Wang Z. Y. Environmental Science & Technology, 2015, 49: 4209.

[17]

Wang X. L., Gu W. W., Guo E., Cai C., Li Y. Environmental Science & Pollution Research, 2017, 24: 14802.

[18]

Jiang L., Li Y. Journal of Hazardous Materials, 2016, 307: 202.

[19]

Qu R. J., Liu H. X., Feng M. B., Yang X., Wang Z. Y. Journal of Chemical and Engineering Data, 2012, 57: 2442.

[20]

Li W. L., Si H. Z., Li Y., Ge C. Z., Song F. C., Ma X. T., Duan Y. B., Zhai H. L. Journal of Molecular Structure, 2016, 1117: 227.

[21]

Holt P. A., Chaires J. B., Trent J. O. ChemInform, 2010, 39: 1602.

[22]

Yang M., Zhou L., Zuo Z. L., Tang X. Y., Liu J. M. X. Molecular Simulation, 2008, 34: 849.

[23]

Li X., Fu J., Shi W., Luo Y., Zhang X., Zhu H., Yu H. Bull. Korean Chem. Soc., 2013.

[24]

Zhang L. Z., Ren Z. J., Lu A., Zhao Z., Xu W., Bao Q. Q., Ding W. J., Yang C. L. Chem. Res. Chinese Universities, 2015, 31(2): 228.

[25]

Yang G. F., Ding Y., Yang H. Z., Wu X. J. Chem. J. Chinese Universities, 2004, 25(1): 71.

[26]

Brinkman W., Brinkman W., Briels J., Verweij H. Chemical Physics Letters, 2017, 247: 386.

[27]

Chu Z. H., Li Y. Journal of Hazardous Materials, 2019, 364: 151.

[28]

Zhang S. J., Qiu Y. L., Li Y. Current Analytical Chemistry, 2018, 14: 1.

[29]

Robrock K. R., Mohn W. W., Eltis L. D., Alvarezcohen L. Biotechnology & Bioengineering, 2011, 108: 313.

[30]

Li X. L., Ye L., Wang X. X., Wang X. Z., Liu H. L., Zhu Y. L., Yu H. X. Toxicology & Applied Pharmacology, 2012, 265: 300.

[31]

Wang X. L., Chu Z. H., Yang J. W., Li Y. Environmental Science & Pollution Research, 2017, 24: 1.

[32]

Meerts I. A., Letcher R. J., Hoving S., Marsh G., Bergman A., Lemmen J. G., Burg B., Brouwer A. Environmental Health Perspectives, 2001, 109: 399.

[33]

Hamers T., Kamstra J. H., Sonneveld E., Murk A. J., Kester M. H., Andersson P. L., Legler J., Brouwer A. Toxicological Sciences, 2006, 92: 157.

[34]

Minerva M. F., Bigsby R. M. Environmental Health Perspectives, 2008, 116: 1315.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/