Facile Synthesis of Metalloporphyrins-Ba2+ Composites as Recyclable and Efficient Catalysts for Olefins Epoxidation Reactions

Qian He , Ying Zhang , Huajian Xiao , Xiaohui He , Xiantai Zhou , Hongbing Ji

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 251 -255.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 251 -255. DOI: 10.1007/s40242-019-8348-6
Article

Facile Synthesis of Metalloporphyrins-Ba2+ Composites as Recyclable and Efficient Catalysts for Olefins Epoxidation Reactions

Author information +
History +
PDF

Abstract

A facile co-precipitation method was developed to prepare the novel metalloporphyrins-Ba2+ composites with ca. 3 μm diameter and olive-like morphology. Olefins epoxidation reactions were employed to investigate their catalytic performance. Compared with the free metalloporphyrins, the composites exhibited not only the improved stability and recyclability, but also the enhanced catalytic activity. Such catalytic behaviors could be related to the unique structure of the composites, e.g., the strong interaction between R-SO3 - and Ba2+ ions and the uniform distribution of metalloporphyrins on the catalyst surface, respectively. Furthermore, the composites showed good compatibility with a wide range of substrates. The well-designed composites are expected to be efficient catalysts, alternative to many sophisticated-synthesized metalloporphrins-based materials, in the industrially important reactions.

Keywords

Metalloporphyrin / FeTPPS-Ba2+ / Olefins epoxidation / Catalytic activity / Recyclability

Cite this article

Download citation ▾
Qian He, Ying Zhang, Huajian Xiao, Xiaohui He, Xiantai Zhou, Hongbing Ji. Facile Synthesis of Metalloporphyrins-Ba2+ Composites as Recyclable and Efficient Catalysts for Olefins Epoxidation Reactions. Chemical Research in Chinese Universities, 2019, 35(2): 251-255 DOI:10.1007/s40242-019-8348-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mansuy D. CR. Chim., 2007, 10(4/5): 392.

[2]

Li Y., Zhou X. T., Ji H. B. Catal. Commun., 2012, 27(19): 169.

[3]

Sakthipriya P., Ananthi N. J. Porphyr. Phthalocya., 2016, 20(6): 730.

[4]

Li P., Cao Z. Organometallics, 2018, 37(3): 406.

[5]

Zhao Q. N., Song Q. W., Liu P., Zhang Q. X., Gao J. H., Zhang K. Chinese J. Chem., 2018, 36(3): 187.

[6]

Ke B. B., Wan L. S., Huang X. J., Xu Z. K. Chem. Res. Chinese Universities, 2011, 27(2): 339.

[7]

Liu L. H., Yu M. M., Wayland B. B., Fu X. F. Chem. Commun., 2010, 46(34): 6353.

[8]

Yang K., Tong S. L., Yan Y., Kang E. H., Xiao F. S., Li Q., Chang X., Fang C. G. Chem. Res. Chinese Universities, 2005, 21(3): 326.

[9]

Alemohammad T., Rayati S., Safari N. J. Porphyr. Phthalocya., 2015, 19(12): 1279.

[10]

Jeong E. Y., Ansari M. B., Park S. E. ACS Catal., 2011, 1(8): 855.

[11]

Zhou X. T., Ren Q. G., Ji H. B. Tetrahedron Lett., 2012, 53(26): 3369.

[12]

Aguiar A. R., Alvarenga E. S., Oliveira R. P., Carneiro V. M. T., Moura L. G. J. Mol. Struct., 2018, 1165: 312.

[13]

Darensbourg D. J. Polym. Degrad. Stabil., 2018, 149: 45.

[14]

Li A., Wu S., Adams J. P., Snajdrova R., Li Z. Chem. Commun., 2014, 50(63): 8771.

[15]

Zhao S., Liu C., Guo Y., Xiao J. C., Chen Q. Y. J. Org. Chem., 2014, 79(18): 8926.

[16]

Nakagaki S., Mantovani K. M., Machado G. S., Castro K. A., Wypych F. Molecules, 2016, 21(3): 291.

[17]

He X. H., Chen L., He Q., Xiao H. J., Zhou X. T., Ji H. B. J. Chem. Technol. Biot., 2017, 92(10): 2594.

[18]

Sun S., Yu Q., Zhang W., Zhao X., Li J., Zhang F. X. Catal. Lett., 2017, 147(1): 228.

[19]

Antonangelo A. R., Bezzu C. G., Mughal S. S., Malewschik T., McKeown N. B., Nakagaki S. Catal. Commun., 2017, 99: 100.

[20]

Naik R., Joshi P., Umbarkar S., Deshpande R. K. Catal. Commun., 2005, 6(2): 125.

[21]

Ye Y. J., Zhou X. T., Huang J. W., Cai J. H., Wu W. H., Yu H. C., Ji H. B., Ji L. N. J. Mol. Catal. A: Chem., 2010, 331(1/2): 29.

[22]

Wang X. Y., Niu C. G., Hu L. Y., Huang D. W., Wu S. Q., Zhang L., Wen X. J., Zeng G. M. Sensor. Actuat. B: Chem., 2017, 243: 1046.

[23]

Zou C., Zhang Z., Xu X., Gong Q., Li J., Wu C. D. J. Am. Chem. Soc., 2012, 134(1): 87.

[24]

Yamaguchi T., Tsukamoto K., Ikeda O., Tanaka R., Kuwabara T., Takahashi K. Electrochim. Acta, 2010, 55(20): 6042.

[25]

Rezaeifard A., Jafarpour M. Catal. Sci. Technol., 2014, 4(7): 1960.

[26]

Li J., Zhang X., Pan B., Xu J., Liu L., Ma J., Yang M., Zhang Z., Tong Z. Chinese J. Chem., 2016, 34(10): 1021.

[27]

Brule E., de Miguel Y. R. Org. Biomol. Chem., 2006, 4(4): 599.

[28]

Liu S. Y., Ren Q. Z., Ding X. J., Wang A. Q., Hou Z. S., Zhang H. Chem. J. Chinese Universities, 2009, 30(7): 1272.

[29]

Zhang K., Farha O. K., Hupp J. T., Nguyen S. T. ACS Catal., 2015, 5(8): 4859.

[30]

Fareghi-Alamdari R., Hafshejani S. M., Taghiyar H., Yadollahi B., Farsani M. R. Catal. Commun., 2016, 78: 64.

[31]

Zhang A., Li L., Li J., Zhang Y., Gao S. Catal. Commun., 2011, 12(13): 1183.

[32]

Dai W., Li G. S., Chen B., Wang L. Y., Gao S. Org. Lett., 2015, 17(4): 904.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/