Hydrothermal Synthesized Co-Ni3S2 Ultrathin Nanosheets for Efficient and Enhanced Overall Water Splitting
Juan Jian , Long Yuan , He Li , Huanhuan Liu , Xinghui Zhang , Xuejiao Sun , Hongming Yuan , Shouhua Feng
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 179 -185.
Hydrothermal Synthesized Co-Ni3S2 Ultrathin Nanosheets for Efficient and Enhanced Overall Water Splitting
We used the one-step hydrothermal controlled synthesis method for Co-Ni3S2 ultrathin nanosheets grown directly on nickel foam(NF). The as-synthesized Co-Ni3S2/NF showed enhanced activities in the hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and better overall water splitting(OWS) efficiency than the un-doped Ni3S2/NF. The voltage of Co-Ni3S2/NF for OWS was only 1.58 V at the current density of 10 mA/cm2 and with long time(>30 h) current output during the current-density(i-t) test. The good i-t performance was also observed in both HER and OER processes. Additionally, the Co-Ni3S2/NF showed a large current density(>1 A/cm2) for both HER and OER. When the current densities reached 100 and 1000 mA/cm2, the required overpotentials for Co-Ni3S2/NF were 0.35 and 0.75 V for OER and 0.30 and 0.85 V for HER. Therefore, after introducing Co, th e activity of Ni3S2-based material was strongly enhanced.
Co-Ni3S2/nickel foam(NF) / Ultrathin nanosheet / Water splitting / Hydrogen evolution reaction / Oxygen evolution reaction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
/
| 〈 |
|
〉 |