Microwave Assisted Hydrothermal Way Towards Highly Crystalized N-Doped Carbon Quantum Dots and Their Oxygen Reduction Performance

He Huang , Chen Liang , Haoyan Sha , Ying Yu , Yue Lou , Cailing Chen , Chunguang Li , Xiaobo Chen , Zhan Shi , Shouhua Feng

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 171 -178.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 171 -178. DOI: 10.1007/s40242-019-8343-y
Article

Microwave Assisted Hydrothermal Way Towards Highly Crystalized N-Doped Carbon Quantum Dots and Their Oxygen Reduction Performance

Author information +
History +
PDF

Abstract

We proposed a green microwave-assisted hydrothermal way to synthesize highly crystalized N-doped carbon quantum dots(N-CQDs). The N-CQDs obtained by this microwave method have good crystalline degree(I D/I G=0.6) and a high molar ratio of N/C(11.1%) comparing with those obtained from traditional top-down method. The experimental results show that glycerine plays a key role in the formation of highly crystalized N-CQDs. The as-prepared N-CQDs have good luminescent property and may be utilized as fluorescent probe to detect ions or mark cells. As the majority of N atoms in the N-CQDs were pyridinic type(64.8%), the as-prepared N-CQDs were used as a catalyst for the oxygen reduction reaction(ORR) electrocatalysis in the anode of the fuel cell(the onset potential is–0.121 V), which was a 4e-transfer procedure and the catalyst showed good stability after 100 cycles.

Keywords

Carbon-dot / Nitrogen-dopping / Highly-crystalized / Oxygen reduction reaction(ORR)

Cite this article

Download citation ▾
He Huang, Chen Liang, Haoyan Sha, Ying Yu, Yue Lou, Cailing Chen, Chunguang Li, Xiaobo Chen, Zhan Shi, Shouhua Feng. Microwave Assisted Hydrothermal Way Towards Highly Crystalized N-Doped Carbon Quantum Dots and Their Oxygen Reduction Performance. Chemical Research in Chinese Universities, 2019, 35(2): 171-178 DOI:10.1007/s40242-019-8343-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu S. J., Meng Q. N., Wang L., Zhang J. H., Song Y. B., Jin H., Zhang K., Sun H. C., Wang H. Y., Yang B. Angew. Chem. Int. Ed., 2013, 52(14): 3953.

[2]

Dong Y. Q., Pang H. C., Yang H. B., Guo C. X., Shao J. W., Chi Y. W., Li C. M., Yu T. Angew. Chem. Int. Ed., 2013, 52(30): 7800.

[3]

Tang L. B., Ji R. B., Li X. M., Bai G., Liu C. P., Hao J. H., Lin J. Y., Jiang H. X., Teng K. S., Yang Z. B., Lau S. P. ACS Nano, 2014, 8(6): 6312.

[4]

Tang L. B., Ji R. B., Cao X. K., Lin J. Y., Jiang H. X., Li X. M., Teng K. S., Luk C. M., Zeng S. J., Hao J. H., Lau S. P. ACS Nano, 2012, 6(6): 5102.

[5]

Li W., Zhang Z. H., Kong B., Feng S. S., Wang J. X., Wang L. Z., Yang J., Zhang F., Wu P. Y., Zhao D. Y. Angew. Chem. Int. Ed., 2013, 52(31): 8151.

[6]

Cao L., Wang X., Meziani M. J., Lu F., Wang H. F., Luo P. J., Lin Y., Harruff B. A., Veca L. M., Murray D., Xie S. Y., Sun Y. P. J. Am. Chem. Soc., 2007, 129(37): 11318.

[7]

Tetsuka H., Nagoya A., Fukusumi T., Matsui T. Adv. Mater., 2016, 28(23): 4632.

[8]

Yoon H., Chang Y. H., Song S. H., Lee E. S., Jin S. H., Park C., Lee J., Kim B. H., Kang H. J., Kim Y. H., Jeon S. Angew. Chem. Int. Ed., 2016, 28(26): 5255.

[9]

Zhu S. J., Zhang J. H., Qiao C. Y., Tang S. J., Li Y. F., Yuan W. J., Li B., Tian L., Liu F., Hu R., Gao H. N., Wei H. T., Zhang H., Sun H. C., Yang B. Chem. Comm., 2011, 47(24): 6858.

[10]

Zhu S. J., Song Y. B., Shao J. R., Zhao X. H., Yang B. Angew. Chem. Int. Ed., 2015, 54(49): 14626.

[11]

Wang J., Liu Y. X., Peng F., Chen C. Y., He Y. H., Ma H., Cao L. X., Sun S. Q. Small, 2012, 8(15): 2430.

[12]

Li F., Wang J., Sun S. S., Wang H., Tang Z. Z., Nie G. J. Small, 2015, 11(16): 1954.

[13]

Gong K. P., Du F., Xia Z. H., Durstock M., Dai L. M. Science, 2009, 323(5915): 760.

[14]

Zheng Y., Jiao Y., Chen J., Liu J., Liang J., Du A. J., Zhang W. M., Zhu Z. H., Smith S. C., Jaroniec M., Lu G. Q., Qiao S. Z. J. Am. Chem. Soc., 2011, 133(50): 20116.

[15]

Li Y., Zhao Y., Cheng H. H., Hu Y., Shi G. Q., Dai L. M., Qu L. T. J. Am. Chem. Soc., 2012, 134(1): 15.

[16]

Zhang H. M., Wang Y., Wang D., Li Y. B., Liu X. L., Liu P. R., Yang H. G., An T. C., Tang Z. Y., Zhao H. J. Small, 2014, 10(16): 3371.

[17]

Han Y. Z., Tang D., Yang Y. M., Li C. X., Kong W. Q., Huang H., Liu Y., Kang Z. H. Nanoscale, 2015, 7(14): 5955.

[18]

Favaro M., Ferrighi L., Fazio G., Colazzo L., Valentin C., Di Durante C., Sedona F., Gennaro A., Agnoli S., Granozzi G. ACS Catalysis, 2014, 5(1): 129.

[19]

Bao L., Liu C., Zhang Z. L., Pang D. W. Adv. Mater., 2015, 27(10): 1663.

[20]

Pan D. Y., Zhang J. C., Li Z., Wu M. H. Adv. Mater., 2010, 22(6): 734.

[21]

Song Z. Q., Quan F. Y., Xu Y. H., Liu M. L., Cui L., Liu J. Q. Carbon, 2016, 104: 169.

[22]

Li F., Li Y. Y., Yang X., Han X. X., Jiao Y., Wei T. T., Yang D. Y., Xu H. P., Nie G. J. Angew. Chem. Int. Ed., 2018, 57(9): 2377.

[23]

Wang X., Cao L., Yang S. T., Lu F. S., Meziani M. J., Tian L. L., Sun K. W., Bloodgood M. A., Sun Y. P. Angew. Chem. Int. Ed., 2010, 49(31): 5310.

[24]

Schwenke A. M., Hoeppener S., Schubert U. S. Adv. Mater., 2015, 27(28): 4113.

[25]

Qu S. N., Wang X. Y., Lu Q. P., Liu X. Y., Wang L. J. Angew. Chem. Int. Ed., 2012, 51(49): 12215.

[26]

Hsu P. C., Chang H. T. Chem. Comm., 2012, 48(33): 3984.

[27]

Huang H., Li C. G., Zhu S. J., Wang H. L., Chen C. L., Wang Z. R., Bai T. Y., Shi Z., Feng S. H. Langmuir, 2014, 30(45): 13542.

[28]

Xu Y., Wu M., Liu Y., Feng X. Z., Yin X. B., He X. W., Zhang Y. K. Chemistry: a European Journal, 2013, 19(7): 2276.

[29]

Du F. Y., Yuan J., Zhang M. M., Li J. N., Zhou Z., Li Z., Cao M. L., Chen J. H., Zhang L. R., Liu X., Gong A. H., Xu W. R., Shao Q. X. RSC Adv., 2014, 4(71): 37536.

[30]

Lu S. Y., Cong R. D., Zhu S. J., Zhao X. H., Liu J. J., Tse J. S., Meng S., Yang B. ACS Appl. Mater. Interfaces, 2016, 8(6): 4062.

[31]

Wu X., Tian F., Wang W. X., Chen J., Wu M., Zhao J. X. J. Mater. Chem. C, 2013, 1(31): 4676.

[32]

Mazzier D., Favaro M., Agnoli S., Silvestrini S., Granozzi G., Maggini M., Moretto A. Chem. Comm., 2014, 50(50): 6592.

[33]

Peng H., Travas-Sejdic J. Chem. Mater., 2009, 21(23): 5563.

[34]

Vallan L., Urriolabeitia E. P., Ruiperez F., Matxain J. M., Canton-Vitoria R., Tagmatarchis N., Benito A. M., Maser W. K. J. Am. Chem. Soc., 2018, 140(40): 12862.

[35]

Krysmann M. J., Kelarakis A., Dallas P., Giannelis E. P. J. Am. Chem. Soc., 2012, 134(2): 747.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/