Analysis of Affinity Energy Between Biphenyl Dioxygenase and Polychlorinated Biphenyls Using Molecular Docking

Xiaohui Zhao , Youli Qiu , Long Jiang , Yu Li

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 325 -332.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 325 -332. DOI: 10.1007/s40242-019-8340-1
Article

Analysis of Affinity Energy Between Biphenyl Dioxygenase and Polychlorinated Biphenyls Using Molecular Docking

Author information +
History +
PDF

Abstract

Molecular docking was used to calculate the affinity energy between biphenyl dioxygenases(BphA), i ncluding 1ULJ, 1WQL, 2YFJ, 2YFL, 2GBX, 2XSH, 2E4P, 3GZX, and 3GZY(selected from the Protein Data Bank) and 209 polychlorinated biphenyl(PCB) congeners. The relationships between the calculated affinity energy and the persistent organic pollutant characteristics(migration, octanol-air partition coefficients, lgK OA; persistence, half-life, lgt 1/2; toxicity, half-maximal inhibitory concentration, lgIC50; bioaccumulation, bioconcentration factor, lgBCF) of the PCBs were studied to understand the BphA mediated degradation of PCBs. The effect of substituent characteristics on the affinity energy was explored through full factorial experimental design. The affinities of nine kinds of BphA pr oteins on PCBs ranked as follows: 2GBX>2YFJ>2YFL>3GZX>2XSH>3GZY>2E4P>1WQL>1ULJ. The relationships between the calculated affinity energy and the molecular weight, lgK OA, lgBCF, and lgt 1/2 of the PCBs were statistically significant(p<0.01), whereas the relationship with the lgIC50 of PCBs was not statistically significant(p>0.05). PCBs were more difficult to degrade following an increase in the free energy of binding. Correlation analysis showed that the average affinity energy values of PCBs gradually increased as the number of chlorine atoms increased, r egardless of the substituent position. The substituents at the ortho-positions interacted mainly through a second-order interaction, whereas those at the para-positions did not participate via a second-order interaction.

Keywords

Polychlorinated biphenyl(PCB) / Molecular docking / Bipheyl dioxygenase(BphA) / Affinity energy / Pearson correlation analysis

Cite this article

Download citation ▾
Xiaohui Zhao, Youli Qiu, Long Jiang, Yu Li. Analysis of Affinity Energy Between Biphenyl Dioxygenase and Polychlorinated Biphenyls Using Molecular Docking. Chemical Research in Chinese Universities, 2019, 35(2): 325-332 DOI:10.1007/s40242-019-8340-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beyer A., Biziuk M. Rev. Environ. Contam. T., 2009, 201: 137.

[2]

O’Sullivan G., Sandau C. Environmental Forensics for Persistent Organic Pollutants, 2013.

[3]

Kjellerup B. V., Paul P., Ghosh U., May H. D., Sowers K. R. App. Environ. Soil Sci., 2012, 2012: 1.

[4]

Kjellerup B. V., Sun X., Ghosh U., May H. D., Sowers K. R. Environ. Microbiology., 2008, 10: 1296.

[5]

Park J. S., Petreas M., Cohn B. A., Cirillo P. M., Factor-Litvak P. Environ. Int., 2009, 35: 937.

[6]

Weijs L., Das K., Siebert U., van Elk N. Jauniaux T., Neels H., Blust R., Covaci A., Environ. Int., 2009, 35: 842.

[7]

Zhang P., Song J. M., Liu Z. G., Zheng G. X., Zhang N. X., He Z. P. Mar. Pollut. Bull., 2007, 54: 1105.

[8]

Alkhatib E., Weigand C. Environ. Monit. Assess., 2002, 78: 1.

[9]

Barakat A. O., Mostafa A., Wade T. L., Sweet S. T., EI Sayed N. B. Chemosphere, 2013, 93: 545.

[10]

Saba T., Su S. J. Hazard. Mater., 2013, 260: 634.

[11]

Frederiksen M., Meyer H. W., Ebbehøj N. E., Gunnarsen L. Chemosphere, 2012, 89: 473.

[12]

DellaValle C. T., Wheeler D. C., Deziel N. C. De Roos A. J., Cerhan J. R., Cozen W., Severson R. K., Flory A. R., Locke S. J., Colt J. S., Hartge P., Ward M. H., Environ. Sci. Technol., 2013, 47: 10405.

[13]

Rawn D. F. K., Sadler A. R., Quade S. C., Sun W. F., Kosarac I., Hayward S., Ryan J. J. Chemosphere, 2012, 89: 929.

[14]

Su G. Y., Liu X. H., Gao Z. S., Xian Q. M., Feng J. F., Zhang X. W., Giesy J. P., Wei S., Liu H. L., Yu H. X. Environ. Int., 2012, 42: 138.

[15]

Hassine S. B., Ameur W. B., Gandoura N., Driss M. R. Chemosphere, 2012, 89: 369.

[16]

Shen H. T., Ding G. Q., Wu Y. N., Pan G. S., Zhou X. P., Han J. L., Li J. G., Wen S. Environ. Int., 2012, 42: 84.

[17]

Jotaki T., Fukata H., Mori C. Chemosphere, 2011, 82: 107.

[18]

Arrebola J. P., Fernandez M. F., Porta M., Rosell J., de la Ossa R. M. Olea N., Martinolmedo P., Environ. Int., 2010, 36: 705.

[19]

Field J. A., Sierra-Alvarez R. Environ. Pollut., 2008, 155: 1.

[20]

Furukawa K., Fujihara H. J. Biosci. Bioeng., 2008, 105: 433.

[21]

Monika C., Zdena K., Alena F., Stefano C., Tomáš C. Chemosphere, 2012, 88: 1317.

[22]

Erickson B. D., Mondello F. J. J. Bacteriol., 1992, 174: 2903.

[23]

Kitagawa W., Miyauchi K., Masai E., Fukuda M. J. Bacteriol., 2001, 183: 6598.

[24]

Bedard D. L., Haberl M. L., May R. J., Brennan M. J. Appl. Environ. Microb., 1987, 53: 1103.

[25]

Jia L. Y., Jia L. Y., Zheng A. P., Xu L., Huang X. D., Zhang Q., Yang F. L. J. Microbiol. Biotechn., 2008, 18: 952.

[26]

Bulter C. S., Mason J. R. Adv. Microb. Physiol., 1997, 38: 47.

[27]

Broadus R. M., Haddock J. D. Arch. Microbiol., 1998, 170: 106.

[28]

Furusawa Y., Nagarajan V., Tanokura M., Masai E., Fukuda F., Senda T. J. Microbiol. Biotechn., 2004, 342: 1041.

[29]

Kumamaru T., Suenaga H., Mitsuoka M., Watanabe T., Furukawa K. Nat. Biotechnol., 1998, 16: 663.

[30]

Yang W. H., Mu Y. S., John P. G., Zhang A. Q., Yu H. X. Chemosphere, 2009, 75: 1159.

[31]

Shoichet B. K., Bodian D. L., Kuntz I. D. J. Comput. Chem., 1992, 13: 380.

[32]

Yutaka F., Venugopalan N., Masaru T., EijiMasai M. F., Toshiya S. J. Mol. Biol., 2004, 342: 1041.

[33]

Dong X. S., Shinya F., Eriko F., Tohru T., Shugo N., Kentaro S., Hideaki N., Toshio O., Hirofumi S., Takayoshi W. J. Bacteriol., 2005, 187: 2483.

[34]

Mohammadi M., Viger J. F., Kumar P., Barriault D., Bolin J. T., Sylvestre M. J. Biol. Chem., 2011, 286: 27612.

[35]

Kumar P., Mohammadi M., Dhindwal S. My Pham T. T., Jeffrey T. B., Sylvestre M., Biochem. Bioph. Res. Co., 2012, 421: 757.

[36]

Daniel J. F., Eric N. B., Yu C. L., Rebecca E. P., David T. G., Ramaswamy S. BMC. Struct. Biol., 2007, 7: 1.

[37]

Kumar P., Mohammadi M., Viger J. F., Barriault D., Leticia G. G., Lindsay D. E., Jeffrey T. B., Michel S. J. Mol. Biol., 2011, 405: 531.

[38]

Senda M., Kishigami S., Kimura S., Fukuda M., Ishida T., Senda T. J. Mol. Biol., 2007, 373: 382.

[39]

Christopher L., Colbert N. Y. R. A., Pravindra K., Mathew N. C., Sangita C. S., Justin B. P., Lindsay D. E., Jeffrey T. B. Plos One, 2013, 8: e52550.

[40]

Qu Q. J., Liu H. X., Feng M. B., Yang X., Wang Z. Y. J. Chem. Eng. Data., 2012, 57: 2442.

[41]

Halgren T. A. J. Comput. Chem., 1996, 17: 490.

[42]

Wang Z. Y., Chang Y. Q., Han Y. S., Liu K. J., Hou J. S., Dai C. L., Zhai Y. H., Guo J. L., Sun P. H., Lin J., Chen W. M. J. Mol. Struct., 2016, 1123: 335.

[43]

Jain A. N. J. Comput. Aid. Mol. Des., 2007, 21: 281.

[44]

Holt P. A., Chaires J. B., Trent J. O. J. Chem. Inf. Model., 2008, 48: 1602.

[45]

Li X. L., Ye L., Wang X. X., Shi W., Liu H. L., Qian X. P., Zhu Y. L., Yu H. X. Chemosphere, 2013, 92: 795.

[46]

Chen Y., Cai X. Y., Jiang L., Li Y. Ecotox. Environ. Safe, 2016, 124: 202.

[47]

Melo E. B. D. Ecotox. Environ. Safe, 2012, 75: 213.

[48]

Xu Z., Chen Y., Qiu Y. L., Gu W. W., Li Y. Chem. Res. Chinese Universities, 2016, 32(3): 348.

[49]

Pender J. L., Kerr J. M. Agr. Econ., 1999, 21: 279.

[50]

Wu B., Zhang Y., Kong J., Zhang X. X., Cheng S. P. Toxicol. Lett., 2009, 191: 69.

[51]

Cao Y. M., Xu L., Jia L. Y. New Biotechnol., 2011, 29: 90.

[52]

Shi J. Q., Qu R. J., Feng M. B., Wang X. H., Wang L. S., Yang S. G., Wang Z. Y. Environ. Sci. Technol., 2015, 49: 4209.

[53]

Zeng X. L., Qu R. J., Feng M. B., Chen J., Wang L. S., Wang Z. Y. Environ. Sci. Technol., 2016, 50: 8128.

[54]

Liu Z. Q. Expression of Biphenyl Dioxygense and the Binding Properties with Substrates, Dalian University of Technology, 2012.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/