Research on Chemical Reactivity of Nitrotriazolam in Its Process of Preparation

Bowen Yang , Qiufeng An , Zhigang Zhao , Kaiyuan Shao , Wenxiang Hu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 680 -685.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (4) : 680 -685. DOI: 10.1007/s40242-019-8339-7
Article

Research on Chemical Reactivity of Nitrotriazolam in Its Process of Preparation

Author information +
History +
PDF

Abstract

Chemical reaction possibility was described quantitatively for the case of nitrotriazolam preparation with 2-clonazepam by using the data of two quantum chemical reactivity indices: net electrophilicity index and Wiberg bond order. Furthermore, relevant reaction mechanism was derived from the aspect of quantum chemistry. The results show that the indices used can quantitatively explain the chemical reactivity and reaction mechanism of the nitrotriazolam preparation. To validate the universal applicability of the proposed approach, the authors continued to use the quantum chemical reactivity indices to describe some classic chemical reactions, expecting to predict major issues related to physical organic chemistry, such as new chemical reactions and their mechanisms.

Keywords

Density functional theory / Net electrophilicity index / Wiberg bond order / Chemical reactivity / Reaction mechanism

Cite this article

Download citation ▾
Bowen Yang, Qiufeng An, Zhigang Zhao, Kaiyuan Shao, Wenxiang Hu. Research on Chemical Reactivity of Nitrotriazolam in Its Process of Preparation. Chemical Research in Chinese Universities, 2019, 35(4): 680-685 DOI:10.1007/s40242-019-8339-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Strambi L F, Marelli S, Zucconi M, Galbiati A, Biggio G. J. Neurol., 2017, 264: 1362.

[2]

Shen X Z, He H J, Yang B W, Zhao Z G, Shao K Y, Hu W X. Chem. Res. Chinese Universities, 2017, 33(5): 773.

[3]

Han X, Shao K Y, Hu W X. Chem. Res. Chinese Universities, 2018, 34(4): 571.

[4]

Shao K Y, He H J, Wang G, Liu Y J, Shen X Z, Hu W X. Chemistry, 2017, 80(11): 1061.

[5]

Parr R. G., Ed.: Chattaraj P. K., Chemical Reactivity Theory: A Density Functional Theory View, Taylor & Francis Group, London, 2009

[6]

Chattaraj P K, Roy D R. Chem. Rev., 2007, 107: 46.

[7]

Geerlings P K, Profit F D, Langenaeker W. Chem. Rev., 2003, 103: 1793.

[8]

Liu S B. Acta Phys.-Chem. Sin., 2009, 25(3): 590.

[9]

Parr R G, Szentpaly L V, Liu S. J. Am. Chem. Soc., 1999, 121: 1922.

[10]

Chattaraj P K, Sarkar U, Roy D R. Chem. Rev., 2006, 106: 2065.

[11]

Shao K Y, Wang Q, Liu M, Xing X, Hu W X. Chemistry, 2014, 77(3): 227.

[12]

Parr R G, Yang W. J. Am. Chem. Soc., 1984, 106: 4049.

[13]

Fukui K. Science, 1987, 218: 747.

[14]

Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy B S, Gutierrez-Oliva S, Toro-Labbe A, Roy D R, Chattaraj P K. J. Phys. Chem. A, 2007, 111(37): 9130.

[15]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmay-lov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staro-verov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannen-berg J J, Dapprich S, Daniels A D, Farkas, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision A.1, 2009, Wallingford CT: Gaussian Inc..

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/