Amorphous Cu0 on Carbon Nanofiber as Recyclable Heterogeneous Catalyst for N-Arylation Reactions

Junzhong Wang , Hengyu Li , Dongdong Zhang , Jie Bai

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 256 -260.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 256 -260. DOI: 10.1007/s40242-019-8338-8
Article

Amorphous Cu0 on Carbon Nanofiber as Recyclable Heterogeneous Catalyst for N-Arylation Reactions

Author information +
History +
PDF

Abstract

A novel heterogeneous catalyst, amorphous Cu0 on the carbon nanofibers was developed and characterized by means of several characterization techniques. The prepared Cu0 was investigated as a heterogeneous catalyst for N-arylation reaction. The results show it is an excellent catalyst with recyclability, high consistency and catalytic activity. After the catalyst was used for 5 cycles in the N-arylation reaction, amorphous Cu0 reunited into crystalline copper nanoparticles with different particle sizes and its good heterogeneity in the catalytic system was confirmed after the catalyst recovery.

Keywords

Amorphous Cu / Carbon nanofiber / N-Arylation reaction

Cite this article

Download citation ▾
Junzhong Wang, Hengyu Li, Dongdong Zhang, Jie Bai. Amorphous Cu0 on Carbon Nanofiber as Recyclable Heterogeneous Catalyst for N-Arylation Reactions. Chemical Research in Chinese Universities, 2019, 35(2): 256-260 DOI:10.1007/s40242-019-8338-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lu X., Roberts S., Franklin G. J., Davie C. Med. Chem. Commum., 2018, 8: 1614.

[2]

Majid G. D., Forugh B. S., Mehdi K., Seyed M. M. S. Helv. Chim. Acta, 2017, 100: e1700082.

[3]

Kumar A., Bishnoi A. K. RSC Adv., 2015, 5: 20516.

[4]

Blanchot M., Candito D. A., Larnaud F., Lautens M. Org. Lett., 2011, 13: 1486.

[5]

Bariwalab J., Eycken E. V. Chem. Soc. Rev., 2013, 42: 9283.

[6]

Baqi Y., Mueller C. E. Nat. Protoc., 2010, 5: 945.

[7]

Kundu D., Bhadra S., Mukherjee N., Sreedhar B., Ranu B. C. Chem. Eur. J., 2013, 19: 15759.

[8]

Bissember A. C., Lundgren R. J., Creutz S. E. Angew. Chem. Int. Ed., 2013, 52: 5129.

[9]

Liu X. M., Chen W., Ni B. Q., Chen X. Z., Qian C., Ge X. Chinese J. Org. Chem., 2018, 38: 1703.

[10]

Lefevre G., Tlili A., Taillefer M., Adamo C., Ciofini I., Jutand A. Dalton Trans., 2013, 42: 5348.

[11]

Lefevre G., Franc G., Tlili A., Adamo C., Taillefer M., Ciofini I., Jutand A. Organometallics, 2012, 31: 7694.

[12]

Wang H., Zhang Z., Zhou H., Wang T., Su J., Tong X., Tian H. Chem. Commun., 2016, 52: 5459.

[13]

Gawande M. B., Goswami A., Felpin F. X., Asefa T., Huang X. X., Silva R., Zou X. X., Zboril R., Varma R. S. Chem. Rev., 2016, 116: 3722.

[14]

Jeonga C., Kima T., Kima J., Suh Y. W. Appl. Catal. A: Gen., 2017, 541: 35.

[15]

Milon B., Mousumi P., Debanjan D., Riya M., Tarakdas B. Nanotechnology, 2018, 29: 325102.

[16]

Huang H. B., Huang W. J., Xu Y., Ye X. G., Wu M. Y., Shao Q. M., Ou G. C., Peng Z. R., Shi J. X., Chen J. D., Feng Q. Y., Zan Y. J., Huang H. L., Hu P. Catal. Today, 2015, 258: 627.

[17]

Ahmed A., Elvati P., Violi A. RSC Adv., 2015, 5: 35033.

[18]

Baig N. B. R., Varma R. S. Curr. Org. Chem., 2013, 17: 2227.

[19]

Zhao Y. J., Zhang Y. Q., Wang Y., Zhang J., Xu Y., Wang S. P., Ma X. B. Appl. Catal. A: Gen., 2017, 539: 59.

[20]

Huang X. M., Ma M., Miao S., Zheng Y. P., Chen M. S., Shen W. J. Appl. Catal. A: Gen., 2017, 531: 79.

[21]

Puthiaraj P., Ahn W. S. Catal. Sci. Technol., 2016, 6: 1701.

[22]

Mondal J., Biswas A., Chiba S., Zhao Y. Sci. Rep., 2015, 5: 1.

[23]

Barot N., Patel S. B., Kaur H. J. Mol. Catal. A, 2016, 423: 77.

[24]

Jin Z., Xiao M. D., Bao Z. H., Wang P., Wang J. F. Angew. Chem. Int. Ed., 2012, 51: 6406.

[25]

Amadine O., Maati H., Abdelouhadi K., Fihri A., Kazzouli S., Len C., Bouari A., Solhy A. J. Mol. Catal. A, 2014, 395: 409.

[26]

Zheng X., Fu W. Q., Xiong J., Xi J. C., Ni X. J., Tang T. D. Catal. Today, 2016, 264: 152.

[27]

Yue C. J., Gan M. M., Gu L. P., Zhuang Y. F. J. Taiwan Inst. Chem. Eng., 2014, 45: 1443.

[28]

Feng Y., McGuireb G. E., Shenderovac O. A., Ked H., Burkett S. L. Thin Solid Films, 2016, 615: 116.

[29]

Hannula P. M., Peltonen A., Aromaa J., Janas D., Lundstrom M., Wilson B. P., Koziol K., Forsen O. Carbon, 2016, 107: 281.

[30]

Wang Q., Li C. P., Bai J., Sun W. Y., Wang J. Z. J. Inorg. Organomet. Polym., 2016, 26: 488.

[31]

Zhang C. L., Li C. P., Bai J., Li H. Y. Catal. Lett., 2015, 145: 1764.

[32]

Movahed S. K., Dabiri M., Bazgir A. Appl. Catal. A: Gen., 2014, 481: 79.

[33]

Ghosh P., Yusop M. Z., Ghosh D., Hayashi A., Hayashi Y., Tanemura M. Chem. Commun., 2011, 47: 4820.

[34]

Li H. Q., Li C. P., Bai J., Zhang C. L., Sun W. Y. RSC Adv., 2014, 4: 48362.

[35]

Shu J., Ma R., Shui M., Wang Y., Long N. B., Wang D. J., Ren Y. L., Zhang R. F., Zheng W. D., Gao S. RSC Adv., 2012, 2: 8323.

[36]

Li H. Y., Bai J., Wang J. Z., Li C. P. Mol. Catal., 2017, 431: 49.

[37]

Yang L., Wu C. Q., Ruan M. B., Yang Y. Q., Zhao Y. X., Niu J. J., Yang W. Tetrahedron Lett., 2012, 53: 4288.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/