Highly Soluble Phenylethynyl-terminated Imide Oligomers and Thermosetting Polyimides Based on 2,2′,3,3′-Biphenyltetracarboxylic Dianhydride
Xiangsheng Meng , Gewu Lu , Xiuju Liu , Qingjie Meng , Junwei Shi , Hang Yuan , Hongjun Ke , Xianwei Wang , Weifeng Fan , Jingfeng Liu , Jingling Yan , Zhen Wang
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 530 -536.
Highly Soluble Phenylethynyl-terminated Imide Oligomers and Thermosetting Polyimides Based on 2,2′,3,3′-Biphenyltetracarboxylic Dianhydride
The properties of a series of imide oligomers were characterized according to their molecular weights, solubility, and thermal and rheological properties. This series of imide oligomers was synthesized via a two-step method using 2,2′,3,3′-biphenyltetracarboxylic dianhydride(3,3′-BPDA) and aromatic diamines as the monomers, and 4-phenylethynyl phthalic anhydride(PEPA) as the end-capping agent. The imide oligomers based on 3,3′-BPDA showed excellent solubility in low boiling point solvents and low melt viscosity, which were attributed to their unique bent architectures. High-performance thermosetting polyimides were produced from these oligomers via thermal crosslinking of the phenylethynyl groups. The mechanical and thermal properties of the thermosets were studied using tensile testing, dynamic mechanical thermal analysis(DMTA), and thermogravimetric analysis(TGA). The 3,3′-BPDA-based thermosets exhibited excellent thermal properties, with glass transition temperatures of up to 455 °C, and 5% mass loss temperatures of up to 569 °C in air. The thermosets based on 3,3′-BPDA showed superior thermal properties compared to those derived from TriA-X series oligomers.
2,2′,3,3′-Biphenyltetracarboxylic dianhydride / Phenylethynyl-terminated imide oligomer / Solubility / Processability / Thermosetting polyimide
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
/
| 〈 |
|
〉 |