Detection of Amines in Lamb Spoilage by Optical Waveguide Sensor Based on Bromophenol Blue-Silicon Composite Film

Sayyara Koxmak , Tajiguli Yimamumaimaiti , Hannikezi Abdukeremu , Patima Nizamidin , Abliz Yimit

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 193 -199.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 193 -199. DOI: 10.1007/s40242-019-8331-2
Article

Detection of Amines in Lamb Spoilage by Optical Waveguide Sensor Based on Bromophenol Blue-Silicon Composite Film

Author information +
History +
PDF

Abstract

We herein report the development of a bromophenol blue(BPB)-silicone composite film/K+-exchange glass optical waveguide(OWG) sensor for the detection of amines produced during the spoilage of lamb. The optical and structural properties of the sensitive thin film were studied by ultraviolet -visible(UV-Vis) spectroscopy, and the light source of the OWG detecting system was selected. Gas sensing measurements showed that the sensor exhibited a good selectivity, high sensitivity, and short response-recovery time towards volatile amine gases in the 0.00117— 11.72 mg/g range. The as-prepared optical waveguide device was subsequently applied in the determination of gases (namely trimethylamine, dimethylamine, and ammonia) emitted from the lamb samples(5 g) stored at room temper ature( 25 °C) and in a refrigerator(5 °C) for 0—4 d, and the total volatile basic nitrogen(TVB-N) contents were detected by UV-Vis spectroscopy, and the results were compared with those obtained using our detector. It was found that the sensing element was capable of detecting mixed gases produced by the decomposition of lamb samples in a refrigerator for 0.5 h, where the TVB-N content was lower than 35 μg/g.

Keywords

Optical waveguide sensor / Composite film / Amine gas / Lamb freshness detection

Cite this article

Download citation ▾
Sayyara Koxmak, Tajiguli Yimamumaimaiti, Hannikezi Abdukeremu, Patima Nizamidin, Abliz Yimit. Detection of Amines in Lamb Spoilage by Optical Waveguide Sensor Based on Bromophenol Blue-Silicon Composite Film. Chemical Research in Chinese Universities, 2019, 35(2): 193-199 DOI:10.1007/s40242-019-8331-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naila A., Flint S., Fletcher G., Bremer P., Meerdink G. Journal of Food Science, 2010.

[2]

Heising J. K., Bartels P. V., Majs V. B., Dekker M. Journal of Food Engineering, 2014, 124: 80.

[3]

Morsy M. K., Zór K., Kostesha N., Alstrøm T. S., Heiskanen A., El-Tanahi H., Sharoba A., Papkovsky D., Larsen J., Khalaf H., Jakobsen M. H., Emneus J. Food Control, 2016, 60: 346.

[4]

Burman Å U. U. Ström K. H. U., Journal of Chemical & Engineering Data, 2013, 58: 257.

[5]

Saad A. A., El-Sikaily A. M. A., El-Badawi E. S., El-Sawaf G. A., Shaheen N. E., Omar M. M., Zakaria M. A. Arabian Journal of Chemistry, 2016.

[6]

Chang L. Y., Chuang M. Y., Zan H. W., Meng H. F., Lu C. J., Yeh P. H., Chen J. N. ACS Sens., 2017, 2: 531.

[7]

Li Z., Suslick K. S. ACS Sens., 2016, 1: 1330.

[8]

Adhoum N., Monser L., Sadok S., El-Abed A., Greenway G. M., Uglow R. F. Analytica Chimica Acta, 2003, 478: 53.

[9]

Heising J. K., Dekker M., Bartels P. V., Boekel M. V. Journal of Food Engineering, 2012, 110: 254.

[10]

Schaude C., Meindl C., Frohlich E., Attard J., Mohr G. J. Talanta, 2017, 170: 481.

[11]

Argyri A. A., Mallouchos A., Panagou E. Z., Nychas G. J. International Journal of Food Microbiology, 2015, 193: 51.

[12]

Mikš-Krajnik M., Yoon Y. J., Yuk H. G. Food Science & Biotechnology, 2015, 24: 361.

[13]

Kim Y., Son S.-H., Lee T. S. Molecular Crystals and Liquid Crystals, 2014, 600: 179.

[14]

Pu Y., Wang W., Alfano R. R. Applied Spectroscopy, 2013, 67: 210.

[15]

Yano Y., Yokoyama K., Karube I. Lebensmittel-Wissenschaft und-Technologie, 1996, 29: 498.

[16]

Wang Q., Xie Y. F., Zhao W. J., Li P., Qian H., Wang X. Z. Anal. Methods, 2014, 6: 2965.

[17]

Yimit A., Itoh K., Murabayashi M. Sensors & Actuators B: Chemical, 2003, 88: 239.

[18]

Yimit A., Rossberg A. G., Amemiya T., Itoh K. Talanta, 2005, 65: 1102.

[19]

Ablat H., Yimit A., Mahmut M., Itoh K. Anal. Chem., 2008, 80: 7678.

[20]

Chattopadhyaya M., Murugan A. N., Rinkevicius Z. J. Phys. Chem. A, 2016, 120: 7175.

[21]

Courbat J., Briand D., Damon-Lacoste J., Wollenstein J., de Rooij N. F. Sensors & Actuators B: Chemical, 2009, 143: 62.

[22]

Hu Y., Ma X., Zhang Y., Che Y., Zhao J. ACS Sens., 2016, 1: 22.

[23]

Zhang K., Peng K. H., Du H. F. J. Preventive Med. Inf., 2009, 1: 78.

[24]

Xu Z. W., Xu J., Xu Q. B., Dong J. F. Opto-Electronic Engineering, 2011, 38: 75.

[25]

Yimit A., Itoh K., Murabayashi M. Electrochemistry, 2001, 69: 863.

[26]

Tuerdi G., Kari N., Yan Y., Nizamidin P., Yimit A. Sensors, 2017, 17: 2717.

[27]

Abdurahman R., Yimit A., Ablat H., Mahmut M., Wang J. D., Itoh K. Analytica Chimica Acta, 2010, 658: 63.

[28]

Patime Y., Abliz Y., Ebeyla R., Patima N. Chem. Res. Chinese Universities, 2012, 28: 682.

[29]

Winans R. Journal of Chemical Education, 1975.

[30]

Nizamidin P., Yin Y., Turdi G., Yimit A. Analytical Letters, 2018, 51: 1.

[31]

Lavers C. R., Itoh K., Wu S. C., Murabayashi M., Mauchline I., Steward G., Stout T. Sensors & Actuators B: Chemical, 2000, 69: 85.

[32]

Simon I., Bârsan N., Bauer M., Weimar U. Sensors & Actuators B: Chemical, 2001, 73: 1.

[33]

Qiao L., Tang X., Dong J. Food Chem., 2017, 237: 1179.

[34]

Crowley K., Pacquit A., Hayes J., King T. L., Diamond D. Sensors, 2005.

[35]

Wang Q., Xie Y. F., Zhao W. J., Li P., Qian H., Wang X. Z. Analytical Methods, 2014, 6: 2965.

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/