One-pot Synthesis of PEGylated Gd-based Nanoparticles as High-performance and Biocompatibility Contrast Agents for T 1-Weighted Magnetic Resonance Imaging In vivo

Sa Huang , Qinghe Han , Lei Wang , Tingting Gong , Qinghai Yuan

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 537 -541.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 537 -541. DOI: 10.1007/s40242-019-8327-y
Article

One-pot Synthesis of PEGylated Gd-based Nanoparticles as High-performance and Biocompatibility Contrast Agents for T 1-Weighted Magnetic Resonance Imaging In vivo

Author information +
History +
PDF

Abstract

Polyethylene glycol modified(PEGylated) NaGdF4(PEG-NaGdF4) nanoparticles as a novel T 1-weighted magnetic resonance imaging(MRI) contrast agent was successfully constructed by a one-pot hydrothermal synthesis method. Because of the functionalization of PEG, the nanoprobes had excellent dispersity, excellent stability and high biocompatibility. More importantly, the as-prepared PEG-NaGdF4 nanoprobes revealed the high longitudinal relaxivity value and prominent T 1-weighted MRI contrast performance, which was superior to the commercial MRI contrast agents. With the facile synthesis, excellent dispersity, outstanding stability, remarkable contrast performance and high biocompatibility, the PEGylated NaGdF4 nanoparticles brought more opportunities to the new generation of nanoparticulate-based T 1-weighted MRI contrast agents in clinic.

Keywords

Nanoparticulate contrast agent / Polyethylene glycol / T 1-Weighted magnetic resonance imaging / Biocompatibility

Cite this article

Download citation ▾
Sa Huang, Qinghe Han, Lei Wang, Tingting Gong, Qinghai Yuan. One-pot Synthesis of PEGylated Gd-based Nanoparticles as High-performance and Biocompatibility Contrast Agents for T 1-Weighted Magnetic Resonance Imaging In vivo. Chemical Research in Chinese Universities, 2019, 35(3): 537-541 DOI:10.1007/s40242-019-8327-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Louie A. Y. Chem. Rev., 2010, 110(5): 3146.

[2]

Na H. B., Song I. C., Hyeon T. Adv. Mater., 2009, 21(21): 2133.

[3]

Ni D. L., Bu W. B., Ehlerding E. B., Cai W. B., Shi J. L. Chem. Soc. Rev., 2017, 46(23): 7438.

[4]

Caravan P., Ellison J. J., McMurry T. J., Lauffer R. B. Chem. Rev., 1999, 99(9): 2293.

[5]

Viswanathan S., Kovacs Z., Green K. N., Ratnakar S. J., Sherry A. D. Chem. Rev., 2010, 110(5): 2960.

[6]

Morrow J. R., Toth E. Inorg. Chem., 2017, 56(11): 10832.

[7]

Penfield J. G., Reilly R. F. Nat. Clin. Pract. Nephr., 2007, 3(12): 654.

[8]

Canavese C., Mereu M. C., Aime S., Lazzarich E., Fenoglio R., Quaglia M., Stratta P. J. Nephrol., 2008, 21(3): 324.

[9]

Peak A. S., Sheller A. Ann. Pharmacother., 2007, 41(9): 1481.

[10]

Sun C., Lee J. S. H., Zhang M. Q. Adv. Drug Deliver. Rev., 2008, 60(11): 1252.

[11]

Liong M., Lu J., Kovochich M., Xia T., Ruehm S. G., Nel A. E., Tamanoi F., Zink J. I. ACS Nano, 2008, 2(5): 889.

[12]

Zhou J., Liu Z., Li F. Y. Chem. Soc. Rev., 2012, 41(3): 1323.

[13]

Cheng L., Wang C., Liu Z. Nanoscale, 2013, 5(1): 23.

[14]

Xie J., Liu G., Eden H. S., Ai H., Chen X. Y. Acc. Chem. Res., 2011, 44(10): 883.

[15]

Wang F., Banerjee D., Liu Y. S., Chen X. Y., Liu X. G. Analyst, 2010, 135(8): 1839.

[16]

Caravan P. Acc. Chem. Res., 2009, 42(7): 851.

[17]

Dong K., Liu Z., Liu J. H., Huang S., Li Z. H., Yuan Q. H., Ren J. S., Qu X. G. Nanoscale, 2014, 6(4): 2211.

[18]

Huang C. X., Chen H. J., Li F., Wang W. N., Li D. D., Yang X. Z., Miao Z. H., Zha Z. B., Lu Y., Qian H. S. J. Mater. Chem. B, 2017, 5(48): 9487.

[19]

Liu K., Yan X., Xu Y. J., Dong L., Hao L. N., Song Y. H., Li F., Su Y., Wu Y. D., Qian H. S., Tao W., Yang X. Z., Zhou W., Lu Y. Biomater. Sci-UK, 2017, 5(12): 2403.

[20]

Wang W. N., Huang C. X., Zhang C. Y., Zhao M. L., Zhang J., Chen H. J., Zha Z. B., Zhao T. T., Qian H. S. Appl. Catal. B: Environ., 2018, 224: 854.

[21]

Wen H. Q., Peng H. Y., Liu K., Bian M. H., Xu Y. J., Dong L., Yan X., Xu W. P., Tao W., Shen J. L., Lu Y., Qian H. S. ACS Appl. Mater. Inter., 2017, 9(11): 9226.

[22]

Deng H. L., Huang S., Xu C. Talanta, 2018, 184: 461.

[23]

Huang S., Liu J. H., Liu D., Yuan Q. H. New J. Chem., 2012, 36(6): 1335.

[24]

Liu Y., Li D. Z., Zhang Y., Liu Z. H., Xie R. G. Chem. Res. Chinese Universities, 2015, 31(1): 1.

[25]

Bridot J. L., Faure A. C., Laurent S., Riviere C., Billotey C., Hiba B., Janier M., Josserand V., Coll J. L., Vander Elst L., Muller R., Roux S., Perriat P., Tillement O. J. Am. Chem. Soc., 2007, 129(16): 5076.

[26]

Dong K., Ju E. G., Liu J. H., Han X. L., Ren J. S., Qu X. G. Nanoscale, 2014, 6(20): 12042.

[27]

Huang S., Chen P., Xu C. Talanta, 2017, 165: 161.

[28]

Yang H. S., Santra S., Walter G. A., Holloway P. H. Adv. Mater., 2006, 18(21): 2890.

[29]

Kojima C., Cho S. H., Higuchi E. Res. Chem. Intermediat., 2012, 38(6): 1279.

[30]

Yallapu M. M., Foy S. P., Jain T. K., Labhasetwar V. Pharm. Res., 2010, 27(11): 2283.

[31]

Passuello T., Pedroni M., Piccinelli F., Polizzi S., Marzola P., Tambalo S., Conti G., Benati D., Vetrone F., Bettinelli M., Speghini A. Nanoscale, 2012, 4(24): 7682.

[32]

Torchilin V. P. Adv. Drug Deliver. Rev., 2002, 54(2): 235.

[33]

Lu Y., Xu Y. J., Zhang G. B., Ling D. S., Wang M. Q., Zhou Y., Wu Y. D., Wu T., Hackett M. J., Kim B. H., Chang H., Kim J., Hu X. T., Dong L., Lee N., Li F. Y., He J. C., Zhang L., Wen H. Q., Yang B., Choi S. H., Hyeon T., Zou D. H. Nat. Biomed. Eng., 2017, 1(8): 637.

[34]

Liu K., Dong L., Xu Y. J., Yan X., Li F., Lu Y., Tao W., Peng H. Y., Wu Y. D., Su Y., Ling D. S., He T., Qian H. S., Yu S. H. Biomaterials, 2018, 158: 74.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/