Zirconium Doped Hydrotalcite-based NiAl Mixed Oxides——Enhanced Performance for Adsorption of SO2 and NO

Ling Zhao , Yu Zhang , Lexin Li , Yating Xing , Shuai Wang , Christopher J. Martyniuk

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 490 -497.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 490 -497. DOI: 10.1007/s40242-019-8324-1
Article

Zirconium Doped Hydrotalcite-based NiAl Mixed Oxides——Enhanced Performance for Adsorption of SO2 and NO

Author information +
History +
PDF

Abstract

In the present study, the adsorptive behavior of zirconium doped hydrotalcite-based NiAl mixed oxides for reducing NO and SO2 was compared. According to the experimental results, the Zr4+ cations were partially dissolved in crystalline NiO phase. With the addition of Zr, new centers for oxygen release and storage were formed, Lewis acid strength increased, and weakly and strongly alkaline sites were expanded. Moreover, in situ FTIR(Fourier transform infrared spectroscopy) investigation demonstrated that the amounts of surface bisulfite, sulfite, nitrite and nitrate species of ZrNiAlO were much more than those of NiAlO. On the whole, this study concluded that the addition of Zr4+ to NiAlO works to improve this compound as major absorbent for SO2 and NO.

Keywords

SO2 / NO / Adsorption / ZrNiAlO mixed oxide

Cite this article

Download citation ▾
Ling Zhao, Yu Zhang, Lexin Li, Yating Xing, Shuai Wang, Christopher J. Martyniuk. Zirconium Doped Hydrotalcite-based NiAl Mixed Oxides——Enhanced Performance for Adsorption of SO2 and NO. Chemical Research in Chinese Universities, 2019, 35(3): 490-497 DOI:10.1007/s40242-019-8324-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yousefi H, Mehrpooya M, Naeiji E. Chem. Eng. Process. Process Intensif., 2017, 120: 220.

[2]

Luo L, Guo Y Y, Zhu T Y, Zheng Y. Energy Fuels, 2017, 31: 11026.

[3]

Zhu H T, Song L Y, He H, Yin M Q, Cheng J, Sun Y M, Li S N, Qiu W G. Chem. J. Chinese Universities, 2019, 40(2): 350.

[4]

Yi H H, Wang Z X, Liu H Y, Tang X L, Ma D, Zhao S Z, Zhang B W, Gao F Y, Zuo Y R. J. Chem. Eng. Data, 2014, 59: 1556.

[5]

Zhao L, Li X Y, Quan X, Chen G H. Environ. Sci. Technol., 2011, 45: 5373.

[6]

Cheng J, Wang X P, Yu J J, Hao Z P, Xu Z P. J. Phys. Chem. C, 2011, 115: 6651.

[7]

Bain J, Cho P, Voutchkova-Kostal A. Green Chem., 2015, 17: 2271.

[8]

Jiang B Q, Deng B Y, Zhang Z Q, Wu Z L, Tang X J, Yao S L, Lu H. J. Phys. Chem. C, 2014, 118: 14866.

[9]

Liu J, Li X Y, Zhao Q D, Hao C, Wang S B, Tadé M. ACS Catal., 2014, 4: 2426.

[10]

Basile F, Fornasari F, Livi G, Tinti M, Trifiro F, Vaccari A. Top. Catal., 2004, 30: 223.

[11]

Liu X, Yi H H, Tang X L, Li Y, Cui B, Wang Y E. Energy Fuels, 2016, 30: 2295.

[12]

Qian J N, Hou X Y, Wang F, Hu Q, Yuan H X, Teng L X, Li R N, Tong Z F, Dong L H, Li B. J. Phys. Chem. C, 2018, 122: 2097.

[13]

Zhao L, Li X Y, Zhao J. Chem. Eng. J., 2013, 223: 164.

[14]

Guan B, Lin H, Zhu L, Huang Z. J. Chem. Phys. C, 2011, 115: 12850.

[15]

Teng G Y, Gao L J, Xiao G M, Liu H, Lv J, Biodiesel H. Appl. Biochem. Biotechnol., 2010, 162: 1725.

[16]

Kikhtyanin O, Capek L, Smolakova L, Tisler Z, Kadlec D, Lhotka M, Diblikova P, Kubicka D. Ind. Eng. Chem. Res., 2017, 56: 13411.

[17]

Meng F H, Li X, Shaw G M, Smith P J, Morgan D J. Ind. Eng. Chem. Res., 2018, 57: 4798.

[18]

Ezekiel D D, Abdullahi M F. Chem. Sci. Trans., 2013, 2: 1386.

[19]

Andreu N, Flahaut D, Dedryvere R, Minvielle M, Martinez H, Gonbeau D. ACS Appl. Mater. Interfaces, 2015, 7: 6629.

[20]

Schweke D, Zalkind S, Attia S, Bloch J. J. Phys. Chem. C, 2018, 122: 9947.

[21]

Prescott H A, Li Z J, Kemnitz E, Trunschke A, Deutsch J, Lieske H, Auroux A. J. Catal., 2005, 234: 119.

[22]

Didier T, Nigamananda D, Bernard C, Robert D. Chem. Mater., 2002, 14: 1530.

[23]

Jams W H, William F B. Thermochim. Acta, 1996, 288: 179.

[24]

Luo L, Guo Y Y, Zhu T Y, Zheng Y. Energy Fuels, 2017, 31: 11026.

[25]

Sun X L, He H, Su Y C, Yan J F, Song L Y, Qiu W G. Chem. J. Chinese Universities, 2017, 38(5): 814.

[26]

Chmielarz L, Dziembaj R, Grzybek T, Klinik J. Catal. Lett., 2000, 70: 51.

[27]

Tan K, Zuluaga S, Wang H, Canepa P, Soliman K, Cure J, Li J, Thonhauser T, Chabal Y J. Chem. Mater, 2017, 29: 4227.

[28]

Liu J, Yu Y, Mu Y, He H. J. Phys. Chem. B, 2006, 110: 3225.

[29]

Zhou G, Zhong B, Wang W, Guan X, Huang B, Ye D, Wu H. Catal. Today, 2011, 175: 157.

[30]

Liu Z M, Liu H Y, Feng X, Ma L L, Cao X Z, Wang B Y. Mol. Catal., 2018, 445: 179.

[31]

Zhang X Y, Zhuang G S, Chen J M, Wang Y, Wang X, An Z S, Zhang P. J. Phys. Chem. B, 2006, 110: 12588.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/