DFT Studies on Second-order Nonlinear Optical Response of Ir(C^N)2(pic) Complexes

Huiying Wang , Zhaobin Shen , Jinting Ye , Hongqiang Wang , Yongqing Qiu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 333 -339.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 333 -339. DOI: 10.1007/s40242-019-8318-z
Article

DFT Studies on Second-order Nonlinear Optical Response of Ir(C^N)2(pic) Complexes

Author information +
History +
PDF

Abstract

Density functional theory(DFT) was employed to calculate the geometrical structures, UV-Vis absorption spectra and second-order nonlinear optical(NLO) properties of a family of iridium(III) complexes, which possess of different cyclometallated ligands(C^N) and ancillary ligands[pyridine-2-carboxylate(pic)]. It was found that the modification of the LUMO energy levels was achieved by changing pic ligands and the energy gaps between the HOMO and LUMO were notably increased or decreased. In addition, the degree of conjugation was significantly changed with the substituent groups varied, which led to that the first hyperpolarizability β could be effectively modulated. Through the analysis of time-dependent DFT(TD-DFT) results, we predicted that these studied complexes with π→π* charge transfer was beneficial to the large second-order NLO properties. Therefore, we hope that these studied iridium( III) complexes can be considered as versatile second-order NLO materials.

Keywords

Density functional theory / Iridium(III) complex / Second-order nonlinear optical(NLO) property

Cite this article

Download citation ▾
Huiying Wang, Zhaobin Shen, Jinting Ye, Hongqiang Wang, Yongqing Qiu. DFT Studies on Second-order Nonlinear Optical Response of Ir(C^N)2(pic) Complexes. Chemical Research in Chinese Universities, 2019, 35(2): 333-339 DOI:10.1007/s40242-019-8318-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Coe B. J., Harris J. A., Hall J. J., Brunschwig B. S., Hung S. T., Libaers W., Clays K., Coles S. J., Horton P. N., Light M. E., Hursthouse M. B., Garín J., Orduna J. Chem. Mater., 2006, 18: 5907.

[2]

Shimada M., Yamanoi Y., Matsushita T., Kondo T., Nishibori E., Hatakeyama A., Sugimoto K., Nishihara H. J. Am. Chem. Soc., 2015, 137: 1024.

[3]

Alioli S., Nason P., Oleari C., Re E. J. High Energ. Phys., 2010, 2010: 43.

[4]

Eaton D. F. Science, 1991, 253: 281.

[5]

Ye J. T., Wang L., Wang H. Q., Pan X. M., Xie H. M., Qiu Y. Q. J. Phys. Chem. C, 2018, 122: 18850.

[6]

Wang H. Q., Wang L., Ye J. T., Xie H. M., Qiu Y. Q. J. Phys. Chem. C, 2017, 121: 28462.

[7]

Coe B. J., Avramopoulos A., Papadopoulos M. G., Pierloot K., Vancoillie S., Reis H. Chem. Eur. J., 2013, 19: 15955.

[8]

Zhang X. L., Zhao X., Liu Z. B., Shi S., Zhou W. Y., Tian G. J., Xu Y. F., Chen Y. S. J. Opt., 2011, 13: 075202.

[9]

Valore A., Colombo A., Dragonetti C., Righetto S., Roberto D., Ugo R. De Angelis F., Fantacci S., Chem. Commun., 2010, 46: 2414.

[10]

Colombo A., Garoni E., Dragonetti C., Righetto S., Roberto D., Baggi N., Escadeillas M., Guerchais V., Kamada K. Polyhedron, 2018, 140: 116.

[11]

Ziemann E. A., Freudenreich N., Speil N., Stein T., van Steerteghem N. Clays K., Heck J., J. Organomet. Chem., 2016, 820: 125.

[12]

Triadon A., Grelaud G., Richy N., Mongin O., Moxey G. J., Dixon I. M., Yang X., Wang G., Barlow A., Rault-Berthelot J., Cifuentes M. P., Humphrey M. G., Paul F. Organometallics, 2018, 37: 2245.

[13]

Wang H. Y., Jing L. X., Wang H. Q., Ye J. T., Qiu Y. Q. J. Organomet. Chem., 2018, 869: 18.

[14]

Zhao N., Wu Y. H., Wen H. M., Zhang X., Chen Z. N. Organometallics, 2009, 28: 5603.

[15]

Liu T., Xia B. H., Zheng Q. C., Zhou X., Pan Q. J., Zhang H. X. J. Comput. Chem., 2010, 31: 628.

[16]

Wang S. J., Wang Y. F., Cai C. J. Phys. Chem. C, 2015, 119: 5589.

[17]

Pielak K., Bondu F., Sanguinet L., Rodriguez V., Castet F., Champagne B. Dyes Pigments, 2019, 160: 641.

[18]

Escudero D., Thiel W., Champagne B. Phys. Chem. Chem. Phys., 2015, 17: 18908.

[19]

Kulasekera E., Petrie S., Stranger R., Humphrey M. G. Organometallics, 2014, 33: 2434.

[20]

Liu J., Yuan P. S., Liang A. H., Ma D. G. J. Lumin., 2018, 203: 83.

[21]

Song M. X., Huang J., Bai F. Q., Wang C. X., Liu H. B., Wang J., Li D. F., Qin Z. K. Chem. Res. Chinese Universities, 2016, 32(3): 451.

[22]

Hierlinger C., Cordes D. B., Slawin A. M. Z., Colombo A., Dragonetti C., Righetto S., Roberto D., Jacquemin D., Zysman-Colman E., Guerchais V. Dalton Trans., 2018, 47: 8292.

[23]

Davidson R. J., Hsu Y. T., Yufit D., Beeby A. Organometallics, 2018, 37: 2003.

[24]

Zhang X. Y., Yu G. T., Chen W., Huang X. R. Chem. J. Chinese Universities, 2015, 36(11): 2204.

[25]

Li Y. F., Cui M. Q., Yan H. J., Yu Y. X., Li M. C., Li X., Chu L. H., Jiang B., Qin M. D. Mater., 2018, 11: 1809.

[26]

Wu J., Wang H. Q., Liu X. Y., Shi Z. Y., Qiu Y. Q. Chem. J. Chinese Universities, 2018, 39(7): 1490.

[27]

Monti F., Baschieri A., Gualandi I. Serra no-Pérez J. J., Junquera-Hernández J. M., Tonelli D., Mazzanti A., Muzzioli S., Stagni S., Roldan-Carmona C., Pertegás A., Bolink H. J., Ortí E., Sambri L., Armaroli N., Inorg. Chem., 2014, 53: 7709.

[28]

Becke A. D. J. Chem. Phys., 1993, 98: 5648.

[29]

Andrae D., Häußermann U., Dolg M., Stoll H., Preuß H. Theor. Chim. Acta, 1990, 77: 123.

[30]

Yan X., Yu Y. X. Mater. Des., 2017, 130: 512.

[31]

Grimme S. J. Comput. Chem., 2006, 27: 1787.

[32]

Cossi M., Barone V. J. Chem. Phys., 2000, 112: 2427.

[33]

Adamo C., Barone V. J. Chem. Phys., 1999, 110: 6158.

[34]

Yanai T., Tew D. P., Handy N. C. Chem. Phys. Lett., 2004, 393: 51.

[35]

Chai J. D., Head-Gordon M. Phys. Chem. Chem. Phys., 2008, 10: 6615.

[36]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daiels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revsion D. 01, Gaussian Inc., Wallingford CT, 2013.

[37]

Lu T., Chen F. J. Comput. Chem., 2012, 33: 580.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/