Freeze-drying-assisted Synthesis of Mesoporous CoMoO4 Nanosheets as Anode Electrode Material for Enhanced Lithium Batteries

Wei Wang , Tao Wang , Xuecheng Fan , Cuilin Zhang , Jinxing Hu , Hui Chen , Zhenxing Fang , Jiefeng Yan , Bing Liu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 261 -270.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 261 -270. DOI: 10.1007/s40242-019-8316-1
Article

Freeze-drying-assisted Synthesis of Mesoporous CoMoO4 Nanosheets as Anode Electrode Material for Enhanced Lithium Batteries

Author information +
History +
PDF

Abstract

A facile and green freeze-drying-assisted method was proposed to synthesize CoMoO4 mesoporous nanosheets( MPNSs). The resulting product exhibits a high specific capacity and good rate performance when evaluated as an anode material for lithium-ion batteries(LIBs). The reversible specific capacity can be kept at 1105.2 mA·h·g–1 after 100 cycles at a current density of 0.2 A/g. Even at the current densities of 1 and 4 A/g, the CoMoO4 MPNSs electrode can still retain the reversible capacities of 1148.7 and 540 mA·h·g–1, respectively. Furthermore, the full cell(LiFePO4 cathode/CoMoO4 MPNSs anode) displays a stable discharge capacity of 146.7 mA·h·g–1 at 0.1 C (1 C=170 mA/g) together with an initial coulombic efficiency of 98.2%. In addition, the CoMoO4 crystal structure is destroyed and reduced into Co0 and Mo0 in the first discharge process. In the subsequent cycles, the attractive Li storage properties come from the reversible conversions between Co/Co2+ and Mo/Mo6+. The improved electrochemical performance of CoMoO4 MPNSs is mainly attributed to their unique porous structures, which not only possess a good ion diffusion and electronic conduction pathway, but also provide many cavities to alleviate the volume changes during repeated cycling. This work offers a new perspective to the design of other porous electrode materials with a good energy storage performance.

Keywords

Freeze-drying / Mesoporous nanosheet / CoMoO4 / Anode material / Lithium storage

Cite this article

Download citation ▾
Wei Wang, Tao Wang, Xuecheng Fan, Cuilin Zhang, Jinxing Hu, Hui Chen, Zhenxing Fang, Jiefeng Yan, Bing Liu. Freeze-drying-assisted Synthesis of Mesoporous CoMoO4 Nanosheets as Anode Electrode Material for Enhanced Lithium Batteries. Chemical Research in Chinese Universities, 2019, 35(2): 261-270 DOI:10.1007/s40242-019-8316-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xin T., Diao F. Y., Li C., Feng H. L., Liu G. J., Zou J. J., Ding Y. H., Liu B., Wang Y. Q. Mater. Res. Bull., 2018, 99: 196.

[2]

Zou J. J., Liu B., Liu H. Q., Ding Y. H., Xin T., Wang Y. Q. Mater. Res. Bull., 2018, 107: 468.

[3]

Ding Y. H., Liu B., Zou J. J., Liu H. Q., Xin T., Xia L. H., Wang Y. Q. Mater. Res. Bull., 2018, 106: 7.

[4]

Wang C., Wu L. X., Wang H., Zuo W. H., Li Y. Y., Liu J. P. Adv. Funct. Mater., 2015, 25: 3524.

[5]

Wang Z. Y., Madhavi S., Lou X. W. J. Phys. Chem. C, 2012, 116: 12508.

[6]

Sakaushi K., Thomas J., Kaskel S., Eckert J. Chem. Mater., 2013, 25: 2557.

[7]

Ahn J. H., Park G. D., Kang Y. C., Lee J. H. Electrochim. Acta, 2015, 174: 102.

[8]

Cherian C. T., Reddy M. V., Haur S. C., Chowdari B. V. R. ACS Appl. Mater. Interfaces, 2013, 5: 918.

[9]

Xue R. N., Hong W., Pan Z., Jin W., Zhao H. L., Song Y. H., Zhou J. K., Liu Y. Electrochim. Acta, 2016, 222: 838.

[10]

Wei H. X., Yang J., Zhang Y. F., Qian Y., Geng H. B. J. Colloid Interf. Sci., 2018, 524: 256.

[11]

Zhang L. F., He W. J., Ling M., Shen K. C., Liu Y., Guo S. W. Electrochim. Acta, 2017, 252: 322.

[12]

You J. F., Xin L., Yu X., Zhou X., Liu Y. Appl. Phys. A, 2018, 124: 271.

[13]

Ju Z. C., Zhang E., Zhao Y. L., Xing Z., Zhuang Q. C., Qiang Y. H., Qian Y. T. Small, 2015, 11: 4753.

[14]

Liu H. W., Tan L. Ionics, 2010, 16: 57.

[15]

Ding Y., Wan Y., Min Y. L., Zhang W., Yu S. H. Inorg. Chem., 2008, 47: 7813.

[16]

Yu H., Guan C., Rui X. H., Ouyang B., Yadian B. L., Huang Y. Z., Zhang H., Hoster H. E., Fan H. J., Yan Q. Y. Nanoscale, 2014, 6: 10556.

[17]

Ko Y. N., Kang Y. C., Park S. B. RSC Adv., 2014, 4: 17873.

[18]

Kim J. K., Kim J. H., Kang Y. C. Chem. Eng. J., 2018, 333: 665.

[19]

Wang Y. S., Sun Y. F., Zhang X., Wen Y. H., Guo J. X. RSC Adv., 2016, 6: 51710.

[20]

Yao J. Y., Gong Y. J., Yang S. B., Xiao P., Zhang Y. H., Keyshar K., Ye G. L., Ozden S., Vajtai R., Ajayan P. M. ACS Appl. Mater. Interfaces, 2014, 6: 20414.

[21]

Yang T., Zhang H. N., Luo Y. Z., Mei L., Guo D., Li Q. H., Wang T. H. Electrochim. Acta, 2015, 158: 327.

[22]

Guo J. X., Zhu H. F., Zhou S. Q., Sun Y. F., Zhang X. Ionics, 2015, 21: 2993.

[23]

Xu J., Gu S. Z., Fan L., Xu P., Lu B. Electrochim. Acta, 2016, 196: 125.

[24]

Lyu D. H., Zhang L. L., Wei H. X., Geng H. B., Gu H. W. RSC Adv., 2017, 7: 51506.

[25]

Chen Y. P., Liu B. R., Jiang W., Liu Q., Liu J. Y., Wang J., Zhang H. S., Jing X. Y. J. Power Sources, 2015, 300: 132.

[26]

Wang B., Li S. M., Wu X. Y., Liu J. H., Tian W. M., Chen J. New J. Chem., 2016, 40: 2259.

[27]

Yang Y., Wang S. T., Jiang C. H., Lu Q. C., Tang Z. L., Wang X. Chem. Mater., 2016, 28: 2417.

[28]

Wang Y. X., Wu Y., Xing L. L., Wang Q., Xue X. Y. J. Alloy. Compd., 2016, 689: 655.

[29]

Chen Y. Y., Wang Y., Shen X. P., Cai R., Yang H. X., Xu K. Q., Yuan A. H., Ji Z. Y. J. Mater. Chem. A, 2018, 6: 1048.

[30]

Zhang L., Zheng S. S., Wang L., Tang H., Xue H. G., Wang G. X., Pang H. Small, 2017, 13: 1700917.

[31]

Wang H., Liu X. Y., Chuah Y. J., Goh J. C. H., Li J. L., Xu H. Y. Chem. Commun., 2013, 49: 1431.

[32]

Wang W., Sun Y., Liu B., Wang S. G., Cao M. H. Carbon, 2015, 91: 56.

[33]

Wang W., Qin J. W., Cao M. H. ACS Appl. Mater. Interfaces, 2016, 8: 1388.

[34]

Cui Z. T., Wang S. G., Zhang Y. H., Cao M. H. Electrochim. Acta, 2015, 182: 507.

[35]

Yin Z. Y., Zhang X., Cai Y. Q., Chen J. Z., Wong J. I., Tay Y. Y., Chai J. W., Wu J., Zeng Z. Y., Zheng B., Yang H. Y., Zhang H. Angew. Chem. Int. Ed., 2014, 53: 12560.

[36]

Lei F. C., Sun Y. F., Liu K. T., Gao S., Liang L., Pan B. C., Xie Y. J. Am. Chem. Soc., 2014, 136: 6826.

[37]

Adamski P., Moszyński D., Komorowska A., Nadziejko M., Sarnecki A., Albrecht A. Inorg. Chem., 2018, 57: 9844.

[38]

Wang W., Qin J. W., Yin Z. G., Cao M. H. ACS Nano, 2016, 10: 10106.

[39]

Hy S., Felix F., Rick J., Su W. N., Wang B. J. H. J. Am. Chem. Soc., 2014, 136: 999.

[40]

He Y. Y., Li A. H., Dong C. F., Li C. C., Xu L. Q. Chem. Eur. J., 2017, 23: 13724.

[41]

Jin S. X., Yang G. Z., Song H. W., Cui H., Wang C. X. ACS Appl. Mater. Interfaces, 2015, 7: 24932.

[42]

Ang W. A., Cheah Y. L., Wong C. L., Prasanth R., Hng H. H., Madhavi S. J. Phys. Chem. C, 2013, 117: 16316.

[43]

Sharma Y., Sharma N. Subba Rao G. V., Chowdari B. V. R., Adv. Funct. Mater., 2007, 17: 2855.

[44]

Popovic J. Demir Cakan R., Tornow J., Morcrette M., Su D. S., Schlögl R., Antonietti M., Titirici M. M., Small, 2011, 7: 1127.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/