Inspired by Grape Seed and Wine: Tannic Acid as a Modified Coating for Fabricating Highly Flexible, Transparent and Conductive Film

Jie Zhao

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 945 -950.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (5) : 945 -950. DOI: 10.1007/s40242-019-8315-2
Article

Inspired by Grape Seed and Wine: Tannic Acid as a Modified Coating for Fabricating Highly Flexible, Transparent and Conductive Film

Author information +
History +
PDF

Abstract

The application of transparent conductive films in flexible electronics has shown promising prospects recently. Tannic acid(TA) was successfully applied to modifying the surface of polydimethylsiloxane(PDMS) to fabricate highly flexible, transparent and conductive Ag nanowires(NWs) based films. TA modification transformed the PDMS surface from hydrophobicity into hydrophilicity without decreasing the transparence. A sheet resistance(R s) of 80 Ω/cm2 with an optical transmittance of 94% was achieved, which was superior to that of indium tin oxide(ITO) films. More importantly, the TA layer enhanced the interaction between Ag NWs and the PDMS substrate. The Ag NWs films on TA modified PDMS substrate exhibited excellent stability in R s when subjected to a bending test.

Keywords

Flexible conductive film / Tannic acid / Surface modification / Transparence / Adhesion

Cite this article

Download citation ▾
Jie Zhao. Inspired by Grape Seed and Wine: Tannic Acid as a Modified Coating for Fabricating Highly Flexible, Transparent and Conductive Film. Chemical Research in Chinese Universities, 2019, 35(5): 945-950 DOI:10.1007/s40242-019-8315-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Osman U, İpek C, Nilgun K. Materials Letters, 2018, 223(15): 210.

[2]

Francesa M, Anson W K M, Tienyi T H, Natnael B, Shannon L E, Colin C Y, Dmitrie T, Matteo P. ACS Nano, 2012, 6(11): 9737.

[3]

Keunhee L, Hyungson K. Applied Surface Science, 2017, 420(31): 886.

[4]

Hu L B, Hecht D S, Gruner G. Chemical Reviews, 2010, 110(10): 5790.

[5]

Li X S, Zhu Y W, Cai W W, Borysiak H, Han B, Chen D, Piner R D, Colombo L, Ruoff R S. Nano Letters, 2009, 9(12): 4359.

[6]

Bea S, Kim H, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y T, Kim Y, Kim K S, Özyilmaz B, Ahn J, Hong B H, Lijima S. Nature Nanotechnology, 2010, 5(8): 574.

[7]

Faisal A, Tran T T, Md J N, Shervin K, Mahmoud M, Diana N H T, Dusan L. Carbon, 2018, 127: 113.

[8]

Eda G, Fanchini G, Chhowalla M. Nature Nanotechnology, 2008, 3(5): 270.

[9]

Huang J H, Liu X H, Lu Y H. Solar Energy Materials and Solar Cells, 2018, 184: 73.

[10]

De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N. ACS Nano, 2009, 3(7): 1767.

[11]

Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J P. Nanotechnology, 2013, 24: 20.

[12]

Hu L, Kim H S, Lee J Y, Peumans P, Cui Y. ACS Nano, 2010, 4(5): 2955.

[13]

Zeng X Y, Zhang Q K, Yu R M, Lu C Z. Advanced Materials, 2010, 22: 4484.

[14]

Rathmell A R, Wiley B J. Advanced Materials, 2011, 23: 4798.

[15]

Maurer J H, Gonzalez-Garcia L, Reiser B, Kanelidis I, Kraus T. Nano Lett, 2016, 16: 2921.

[16]

Han J H, Kim D H, Jeong E G, Lee T W, Lee M K, Park J W, Lee H, Choi K C. ACS Applied Materials & Interfaces, 2017, 9: 16343.

[17]

An S, Jo H S, Kim D Y, Lee H J, Ju B K, Al-Deyab S S, Ahn J H, Qin Y, Swihart M T, Yarin A L, Yoon S S. Advanced Materials, 2016, 28: 7149.

[18]

Azulai D, Belenkova T, Gilon H, Barkay Z, Markovich G. Nano Letters, 2009, 9: 4246.

[19]

Ryspaeva A, Jones T D A, Esfahani M N, Shuttleworth M P, Harris R A, Kay R W, Desmulliez M P Y, Marques-Hueso J. Microelectronic Engineering, 2019, 209: 35.

[20]

Rian S, Steve A. Sci. Rep., 2015, 5: 1.

[21]

Byun I, Coleman A W, Kim B. Journal of Micromechanics and Microengineering, 2013, 23: 085016.

[22]

Assel R, Thomas D A J, Mhammadreza N E, Matthew P S, Jose M. Microelectronic Engineering, 2019, 209: 35.

[23]

Bilgin S, Isik M, Yilgor E, Yilgor I. Polymer, 2013, 54: 6665.

[24]

Ye H K, Gu Z Y, Gracias D H. Langmuir, 2006, 22: 1863.

[25]

Kim S H, Yang Y, Kim M, Nam S W, Lee K M, Lee N Y, Kim Y S, Park S. Advanced Functional Materials, 2007, 17: 3493.

[26]

Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318: 426.

[27]

Jin Y, Cheng Y, Deng D, Jiang C, Qi T, Yang D, Xiao F. ACS Applied Materials & Interfaces, 2014, 6: 1447.

[28]

Fontoin H, Saucier C, Teissedre P L, Glories Y. Food Quality and Preference, 2008, 19: 286.

[29]

Kennedy J A, Ferrier J, Harbertson J F, Gachons C P D. Am. J. Enol. Viticult., 2006, 57: 481.

[30]

Al L A H, Azlan K, Esther P. International Journal of Biological Macromolecules, 2018, 120: 1119.

[31]

Smith A K, June H, Noble A C. Food Quality and Preference, 1996, 7: 161.

[32]

Cole K C, Guevremont J, Ajji A, Dumoulin M. Applied Spectroscopy, 1994, 48: 1513.

[33]

Pandey K. Journal of Applied Polymer Science, 1999, 71: 1969.

[34]

Ke Y K, Dong H R. Analytical Chemistry Handbook, 1998, Beijing: Chemical Industry Press, 1324.

[35]

Sileika T S, Barrett D G, Zhang R, Lau K H A, Messersmith P B. Angewandte Chemie International Edition, 2013, 52: 10766.

[36]

King P J, Khan U, Lotya M, De S, Coleman J N. ACS Nano, 2010, 4: 4238.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/