Functionalized Polyphosphoester via Living Ring-opening Polymerization and Photochemical Thiol-ene Click Reaction

Ying Wang , Qiliao Wang , Liman Hou , Mingdong Zhou , Dewen Dong , Ning Zhang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 340 -344.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 340 -344. DOI: 10.1007/s40242-019-8309-0
Article

Functionalized Polyphosphoester via Living Ring-opening Polymerization and Photochemical Thiol-ene Click Reaction

Author information +
History +
PDF

Abstract

Poly(ethylene phosphonate) was synthesized via the living ring-opening polymerization of cyclic phosphonate monomer catalyzed by organocatalyst. The pendant vinyl functionalities were employed to perform the photochemical click reactions with thiols. We demonstrated that both small thiol molecules and macromolecular thiols could be efficiently coupled into the PPE side chains, enabling the rapid and efficient functionalization of polyphosphoesters( PPE).

Keywords

Cyclic phosphonate / Ring-opening polymerization / Thiol-ene click reaction / Post modification

Cite this article

Download citation ▾
Ying Wang, Qiliao Wang, Liman Hou, Mingdong Zhou, Dewen Dong, Ning Zhang. Functionalized Polyphosphoester via Living Ring-opening Polymerization and Photochemical Thiol-ene Click Reaction. Chemical Research in Chinese Universities, 2019, 35(2): 340-344 DOI:10.1007/s40242-019-8309-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Price D., Pyrah K., Hull T. R., Milnes G. J., Ebdon J. R., Hunt B. J., Joseph P. Polym. Degrad. Stab., 2002, 77: 227.

[2]

Parvole J., Jannasch P. Macromolecules, 2008, 41: 3893.

[3]

Steininger H., Schuster M., Kreuer K. D., Kaltbeitzel A., Bingoel B., Meyer W. H., Schauff S., Brunklaus G., Maier J., Spiess H. W. Phys. Chem. Chem. Phys., 2007, 9: 1764.

[4]

Greish Y. E., Brown P. W. Biomaterials, 2001, 22: 807.

[5]

Ellis J., Wilson A. D. Dent. Mater., 1992, 8: 79.

[6]

Gemeinhart R. A., Bare C. M., Haasch R. T., Gemeinhart E. J. J. Biomed. Mater. Res., 2006.

[7]

Seo J. H., Matsuno R., Takai M., Ishihara K. Biomaterials, 2009, 30: 5330.

[8]

Goda T., Matsuno R., Konno T., Takai M., Ishihara K. J. Biomed. Mater. Res., Part B, 2009.

[9]

Macarie L., Ilia G. Prog. Polym. Sci., 2010, 35: 1078.

[10]

Georgieva R., Tsevi R., Kossev K., Kusheva R., Balgjiska M., Petrova R., Tenchova V., Gitsov I., Troev K. J. Med. Chem., 2002, 45: 5797.

[11]

Monge S., Canniccioni B. Biomacromolecules, 2011, 12: 1973.

[12]

Wang Y. C., Yuan Y. Y., Du J. Z., Yang X. Z., Wang J. Macromol. Biosci., 2009, 9: 1154.

[13]

Zhang N., Salzinger S., Deubel F., Jordan R., Rieger B. J. Am. Chem. Soc., 2012, 134: 7333.

[14]

Zhang N., Salzinger S., Rieger B. Macromolecules, 2012, 45: 9751.

[15]

Song W. J., Du J. Z., Liu N. J., Dou S., Cheng J., Wang J. Macromolecules, 2008, 41: 6935.

[16]

Sun T. M., Du J. Z., Yan L. F., Mao H. Q., Wang J. Biomaterials, 2008, 29: 4348.

[17]

McKinlay C. J., Waymouth R. M., Wender P. A. J. Am. Chem. Soc., 2016, 138: 3510.

[18]

Zhang S., Li A., Zou J., Lin L. Y., Wooley K. L. ACS Macro Lett., 2012, 1: 328.

[19]

Baeten E., Vanslambrouck S., Jérôme C., Lecomte P., Junkers T. Eur. Polym. J., 2016, 80: 208.

[20]

Lim Y. H., Heo G. S., Rezenom Y. H., Pollack S., Raymond J. E., Elsabahy M., Wooley K. L. Macromolecules, 2014, 47: 4634.

[21]

Zhou C., Li Y. H., Jiang Z. H., Ahn K. D., Hu T. J., Wang Q. H., Wang C. H. Chin. Chem. Lett., 2016, 27: 685.

[22]

Chen H., Zou Z. L., Tan S. L., Bi J. H., Tian D. M., Li H. B. Chin. Chem. Lett., 2013, 24: 367.

[23]

Steinbach T., Ritz S., Wurm F. R. ACS Macro Lett., 2014, 3: 244.

[24]

Libiszowski J., Kałużynski K., Penczek S. J. Polym. Sci., Polym. Chem. Ed., 1978, 16: 1275.

[25]

Killops K. L., Campos L. M., Hawker C. J. J. Am. Chem. Soc., 2008, 130: 5062.

[26]

Campos L. M., Killops K. L., Sakai R., Paulusse J. M., Damiron D., Drockenmuller E., Hawker C. J. Macromolecules, 2008, 41: 7063.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/