Approach to 2′-(Dialkylamino)-1-alkyl-4′H-spiro[indoline-3,5′- oxazole]-2,4′-diones and 1,3-Oxazin-4-ones via Cyclization of Vilsmeier Salts with α-Hydroxy and β-Carbonyl Amides

Jianan Dai , Bengen Liu , Zhonglin Wei , Jungang Cao , Dapeng Liang , Haifeng Duan , Yingjie Lin

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 216 -220.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 216 -220. DOI: 10.1007/s40242-019-8307-2
Article

Approach to 2′-(Dialkylamino)-1-alkyl-4′H-spiro[indoline-3,5′- oxazole]-2,4′-diones and 1,3-Oxazin-4-ones via Cyclization of Vilsmeier Salts with α-Hydroxy and β-Carbonyl Amides

Author information +
History +
PDF

Abstract

A straightforward and efficient synthetic method of 2′-(dialkylamino)-1-alkyl-4′H-spiro[indoline-3,5′- oxazole]-2,4′-diones and 2-(dialkylamino)-5,6-dihydro-4H-naphtho[2,1-e][1,3]oxazin-4-one derivatives have been developed from α-hydroxy and β-carbonyl amides and various Vilsmeier salts. A wide range of heterocyclic compounds were obtained in excellent yields(up to 97%), which will provide promising candidates for chemical biology and drug discovery.

Keywords

Spirooxindole unit / 2-Oxazolin-4-ones core structure / 3-Oxazin-4-ones core structure

Cite this article

Download citation ▾
Jianan Dai, Bengen Liu, Zhonglin Wei, Jungang Cao, Dapeng Liang, Haifeng Duan, Yingjie Lin. Approach to 2′-(Dialkylamino)-1-alkyl-4′H-spiro[indoline-3,5′- oxazole]-2,4′-diones and 1,3-Oxazin-4-ones via Cyclization of Vilsmeier Salts with α-Hydroxy and β-Carbonyl Amides. Chemical Research in Chinese Universities, 2019, 35(2): 216-220 DOI:10.1007/s40242-019-8307-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Trost B. M., Brennan M. K. Synthesis, 2009, 18(2009): 3003.

[2]

Zhou F., Liu Y. L., Zhou J. Adv. Synth. Catal., 2010, 352(9): 1381.

[3]

Singh G. S., Desta Z. Y. Chem. Rev., 2012, 112(11): 6104.

[4]

Elderfield R. C., Gilman R. E. Phytochemistry, 1972, 11(1): 339.

[5]

Kosuge T., Tsuji K., Hirai K., Fukuyama T. Chem. Pharm. Bull., 1985, 33(7): 3059.

[6]

Jiang X., Cao Y., Wang Y., Liu L., Shen F., Wang R. J. Am. Chem. Soc., 2010, 132(43): 15328.

[7]

Suchy M., Kutschy P., Monde K., Goto H., Harada N., Takasugi M., Dzurilla M., Balentová E. J. Org. Chem., 2001, 66(11): 3940.

[8]

Mitsuo T., Kenji M., Nobukatsu K., Akira S. Chem. Lett., 1987, 16(8): 1631.

[9]

Shen L. T., Jia W. Q., Ye S. Angew. Chem. Int. Ed., 2013, 52(2): 585.

[10]

Bencivenni G., Wu L. Y., Mazzanti A., Giannichi B., Pesciaioli F., Song M. P., Bartoli G., Melchiorre P. Angew. Chem. Int. Ed., 2009, 48(39): 7200.

[11]

Subba R. B. V., Swathi V., Swain M., Bhadra M. P., Sridhar B., Satyanarayana D., Jagadeesh B. Org. Lett., 2014, 16(24): 6267.

[12]

Piou T., Neuville L., Zhu J. Angew. Chem. Int. Ed, 2012, 51(46): 11561.

[13]

Jaegli S., Erb W., Retailleau P., Vors J. P., Neuville L., Zhu J. Chem. Eur. J., 2010, 16(20): 5863.

[14]

Ruck R. T., Huffman M. A., Kim M. M., Shevlin M., Kandur W. V., Davies I. W. Angew. Chem. Int. Ed., 2008, 47(25): 4711.

[15]

Kausar N., Masum A. A., Islam M. M., Das A. R. Mol. Divers., 2017, 21(2): 325.

[16]

Hajra S., Aziz S. M., Jana B., Mahish P., Das D. Org. Lett., 2016, 18(3): 532.

[17]

Wei F., Huang H. Y., Zhong N. J., Gu C. L., Wang D., Liu L. Org. Lett., 2015, 17(7): 1688.

[18]

Gao L., Zha Y., Tao S., Gao Y., Chen M., Jiang L., Rong L. Res. Chem. Intermed., 2015, 41(8): 5627.

[19]

Moffett R. B. J. Heterocycl. Chem., 1980, 17(4): 753.

[20]

Herrin T. R., Pauvlik J. M., Schuber E. V., Geiszler A. O. J. Med. Chem., 1975, 18(12): 1216.

[21]

Harnden M. R., Rasmussen R. R. J. Med. Chem., 1970, 13(2): 305.

[22]

Dirlam J. P., Clark D. A., Hecker S. J. J. Org. Chem., 1986, 51(25): 4920.

[23]

Kassick A. J., Jiang J., Bunda J., Wilson D., Bao J., Lu H., Lin P., Ball R. G., Doss G. A., Tong X., Tsao K. L. C., Wang H., Chicchi G., Karanam B., Tschirret-Guth R., Samuel K., Hora D. F., Kumar S., Madeira M., Eng W., Hargreaves R., Purcell M., Gantert L., Cook J., DeVita R. J., Mills S. G. J. Med. Chem., 2013, 56(14): 5940.

[24]

Akba E., Aslanolu F. Heteroat. Chem., 2006, 17(1): 8.

[25]

Morrison R., Al-Rawi J. M. A., Jennings I. G., Thompson P. E., Angove M. J. Eur. J. Med. Chem., 2016, 110(3): 326.

[26]

Ihmaid S., Al-Rawi J., Bradley C., Angove M. J., Robertson M. N., Clark R. L. Biorg. Med. Chem., 2011, 19(13): 3983.

[27]

Morrison R., Belz T., Ihmaid S. K., Al-Rawi J. M. A., Angove M. J. Med. Chem. Res., 2014, 23(11): 4680.

[28]

Sato M., Kanuma N., Kato T. Chem. Pharm. Bull., 1984, 32(1): 106.

[29]

Sato M., Yoneda N., Kaneko C. Chem. Pharm. Bull., 1986, 34(2): 621.

[30]

Su D., Duan H., Wei Z., Cao J., Liang D., Lin Y. Tetrahedron Lett., 2013, 54(50): 6959.

[31]

Liu B., Su D., Wei Z., Cao J., Liang D., Lin Y., Duan H. Chem. Lett., 2017, 46(2): 249.

[32]

Zhang Q., Li R., Zhai Y., Liu F., Gao G. Chem. Res. Chinese Universities., 2010, 26(3): 394.

[33]

Wang J., Yuan Y., Xiong R., Zhang-Negrerie D., Du Y., Zhao K. Org. Lett., 2012, 14(9): 2210.

[34]

Cui L. Q., Dong Z. L., Liu K., Zhang C. Org. Lett., 2011, 13(24): 6488.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/