Spectral Study on the Interactions Among Cu(II), Doxorubicin and CopC

Yunxi Song , Zhen Song , Binsheng Yang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 53 -59.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 53 -59. DOI: 10.1007/s40242-019-8284-5
Article

Spectral Study on the Interactions Among Cu(II), Doxorubicin and CopC

Author information +
History +
PDF

Abstract

Interactions among Cu(II), doxorubicin and CopC have been investigated in detail by means of fluorescence, UV-Vis, IR spectra, isothermal titration calorimetry(ITC) and molecular docking in Tris-HCl buffer(50 mmol/L, pH=7.4, 25 °C). The results suggest that Cu(II)-doxorubicin is formed in a Cu(II) to doxorubicin ratio of 1:2, and the conditional stability constant, K [Cu(II)-doxorubicin] is 1.90×109 L2/mol2, CopC and doxorubicin can form a 1:1 complex, the conditional stability constant is greater than 105 L/mol. Binding of doxorubicin causes a conformational change in CopC with the reduction of β-sheet and increase of random coil, and the stability of CopC is decreased. Cu(II), doxorubicin and CopC can form a CopC-Cu(II)-doxorubicin ternary complex. The formation of CopC-Cu(II)-doxorubicin reduced greatly the reduction rate of Cu(II) by ascorbate(Vc), i.e. the binding of doxorubicin affects the action of CopC as redox switch.

Keywords

Doxorubicin / CopC / Cu(II) Interaction

Cite this article

Download citation ▾
Yunxi Song, Zhen Song, Binsheng Yang. Spectral Study on the Interactions Among Cu(II), Doxorubicin and CopC. Chemical Research in Chinese Universities, 2019, 35(1): 53-59 DOI:10.1007/s40242-019-8284-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mandinov L., Mandinova A., Kyurkchiev S., Kyurkchiev D., Kehayov I., Kolev V., Soldi R., Bagala C., de Muinck E. D., Lindner V. Proc. Natl. Acad. Sci., 2003, 100(11): 6700.

[2]

Wang J., Luo C., Shan C., You Q., Lu J., Elf S., Zhou Y., Wen Y., Vinkenborg J. L., Fan J., Kang H., Lin R., Han D., Xie Y., Karpus J., Chen S., Ouyang S., Luan C., Zhang N., Ding H., Merkx M., Liu H., Chen J., Jiang H., He C. Nat. Chem., 2015, 7(12): 968.

[3]

Eatock M. M., Schätzlein A., Kaye S. B. Cancer Treat. Rev., 2000, 26(3): 191.

[4]

Lowndes S. A., Harris A. L. J. Mammary Gland Biol., 2005, 10(4): 299.

[5]

Rae T. D., Schmidt P. J., Pufahl R. A., Culotta V. C., O’Halloran T. V. Science, 1999, 284(5415): 805.

[6]

Puig S., Thiele D. J. Curr. Opin. Chem. Biol., 2002, 6(2): 171.

[7]

O’Halloran T. V., Culotta V. C. Metallochaperones, J. Biol. Chem., 2000, 275(33): 25057.

[8]

Finney L. A., O’Halloran T. V. Science, 2003, 300(5621): 931.

[9]

Robinson N. J., Winge D. R. Annu. Rev. Biochem., 2010, 79(1): 537.

[10]

Arnesano F., Banci L., Bertini I., Thompsett A. R. Structure, 2002, 10(10): 1337.

[11]

Djoko K. Y., Xiao Z., Huffman D. L., Wedd A. G. Inorg. Chem., 2007, 46(11): 4560.

[12]

Arnesano F., Banci L., Bertini I., Mangani S., Thompsett A. R. Proc. Natl. Acad. Sci., 2003, 100(7): 3814.

[13]

Koay M., Zhang L., Yang B. S., Maher M. J., Xiao Z. G., Wedd A. G. Inorg. Chem., 2005, 44(15): 5203.

[14]

Song Z., Zheng X. Y., Yang B. S. Protein Sci., 2013, 22(11): 1519.

[15]

Song Z., Ming J., Yang B. S. J. Biol. Inorg. Chem., 2014, 19(3): 359.

[16]

Sze C. M., Khairallah G. N., Xiao Z. G., Donnelly P. S., O’Hair R. A. J., Wedd A. G. J. Biol. Inorg. Chem., 2009, 14(2): 163.

[17]

Pang E. G., Zhao Y. Q., Yang B. S. Chin. Sci. Bull., 2005, 50(20): 2302.

[18]

Song Z., Wang J. L., Yang B. S. Spectrochim. Acta, Part A, 2014, 118: 454.

[19]

Song Z., Yuan W., Zhu R. T., Wang S., Zhang C. F. Int. J. Biol. Macromol., 2017, 96: 192.

[20]

Ren X. L., Song Z., Yang B. S. Chinese J. Inorg. Chem., 2015, 31(9): 1811.

[21]

Hosseini Moltlagh N. S. Parvin P., Refahizadeh M., Bavali A., Appl. Opt., 2017, 56(26): 7498.

[22]

Thao L. Q., Byeon H. J., Lee C., Lee E. S., Choi Y. W., Choi H. G., Park E. S., Lee K. C., Youn Y. S. Pharm. Res., 2016, 33(3): 615.

[23]

Dreis S., Rothweiler F., Michaelis M., Cinatl J., Langer K., Kreuter J. Int. J. Pharmaceut., 2007, 34(1): 207.

[24]

Byler D. M., Susi H. Biopolymers, 1986, 25(3): 469.

[25]

Mandeville J. S., Froehlich E., Tajmir-Riahi H. A. J. Pharm. Biomed., 2009, 49(2): 468.

[26]

Alam P., Chaturvedi S. K., Anwar T., Siddiqi M. K., Ajmal M. R., Badr G., Mahmoud M. H., Khan R. H. J. Lumin., 2015, 164: 123.

[27]

Möhler J. S., Kolmar T., Synnatschke K., Hergert M., Wilson L. A., Ramu S., Elliott A. G., Blaskovich M. T., Sidjabat H. E., Paterson D. L. J. Inorg. Biochem., 2017, 167: 134.

[28]

Kantonen S. A., Henriksen N. M., Gilson M. K. Biochim. Biophys. Acta, 2017, 1861(2): 485.

[29]

Johnson R. A., Manley O. M., Spuches A. M., Grossoehme N. E. Biochim. Biophys. Acta, 2016, 1860(5): 892.

[30]

Shi E. X., Zhang W. L., Zhao Y. Q., Yang B. S. RSC Adv., 2017, 7: 27139.

[31]

Yang B. S., Song Z., Zheng X. Y., Zhao Y. Q. Science China Chemistry, 2012, 55(7): 1351.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/