Lactic Acid Assisted Solvothermal Synthesis of BiOCl xI1–x Solid Solutions as Excellent Visible Light Photocatalysts

Chenglin Duan , Jinling Song , Baoying Wang , Lun Li , Ruifen Wang , Bangwen Zhang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 277 -284.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 277 -284. DOI: 10.1007/s40242-019-8274-7
Article

Lactic Acid Assisted Solvothermal Synthesis of BiOCl xI1–x Solid Solutions as Excellent Visible Light Photocatalysts

Author information +
History +
PDF

Abstract

A series of BiOCl xI1–x(x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) photocatalysts was firstly prepared by means of a facile solvothermal route with the help of lactic acid. The measured results show that the morphologies of the as-prepared samples are similar sheets with different thickness and diameters. Thinner nanosheets assembled flower-like BiOCl0.5I0.5 solid solution exhibited the highest photocatalytic activity and stability among the prepared samples for the degradation of methylene blue(MB) and methyl orange(MO) under the illumination of visible light. The excellent photocatalytic properties of BiOCl0.5I0.5 could be attributed to the high specific surface area, the suitable band gap energy and the lower recombination rate of the electrons and holes. In addition, catalyst BiOCl0.5I0.5 was further used to degradate a more complicated mixed dye (MO+RhB+MB) system under visible light, displaying an excellent photocatalytic activity. Finally, the photocatalytic mechanism of catalyst BiOCl0.5I0.5 to degradate colorful dyes was proposed. The trapping experiments of active species indicated that the holes are the main active species for the degradation of the mixed dyes.

Keywords

Solid solution / Bismuth oxyhalide / Mixed dye / Solvothermal / Photocatalysis

Cite this article

Download citation ▾
Chenglin Duan, Jinling Song, Baoying Wang, Lun Li, Ruifen Wang, Bangwen Zhang. Lactic Acid Assisted Solvothermal Synthesis of BiOCl xI1–x Solid Solutions as Excellent Visible Light Photocatalysts. Chemical Research in Chinese Universities, 2019, 35(2): 277-284 DOI:10.1007/s40242-019-8274-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mahadik M. A., An G. W., David S., Choi S. H., Cho M., Jang J. S. Appl. Sur. Sci., 2017, 426: 833.

[2]

Shanker U., Jassal M., Rani V. Environ. Chem. Lett., 2017, 15: 1.

[3]

Hong J. L., Otaki H., Emori M. J. Biosci. Bioeng., 2005, 100: 192.

[4]

K., Zhang Q. Z. China Environ. Sci., 2018, 38: 852.

[5]

Choi Y. I., Jung H. J., Shin W. G., Sohn Y. Appl. Sur. Sci., 2015, 356: 615.

[6]

Qi K., Cheng B., Yu J., Ho W. J. Alloy. Compd., 2017, 727: 792.

[7]

Xu B., Ahmed M. B., Zhou J. L., Altaee A., Wu M., Xu G. Chemosphere, 2017, 189: 717.

[8]

Khalid N. R., Majid A., Tahir M. B., Niaz N. A., Khalid S. Ceram. Int., 2017, 43: 14552.

[9]

Yoon H. J., Choi Y. I., Jang E. S., Sohn Y. J. Ind. Eng. Chem., 2015, 32: 137.

[10]

Lee S., Park Y. Pradhan D.. Sohn Y., J. Ind. Eng. Chem., 2016, 35: 231.

[11]

Choi Y. I., Kim Y. I., Cho D. W., Kang J. S., Leungb K. T., Sohn Y. RSC Adv., 2015, 5: 79624.

[12]

Li F. T., Wang Q., Wang X. J., Li B., Hao Y. J., Liu R. H., Zhao D. S. Appl. Catal. B: Environ., 2014, 151: 574.

[13]

Xie J., Cao Y. L., Jia D. Z., Li Y. Z. J. Colloid. Interf. Sci., 2017, 503: 115.

[14]

Zhao Q. H., Liu X. Y., Xing Y. X., Liu Z. L., Du C. F. J. Mater. Sci., 2017, 52: 2117.

[15]

Jia X. M., Cao J., Lin H. L., Zhang M. Y., Guo X. M., Chen S. F. Appl. Catal. B: Environ., 2017, 204: 505.

[16]

Huang Y. T., Ying Z. P., Zheng J. X., Zhuang S. G., Liu L., Feng W. Chem. J. Chinese Universities, 2018, 39(9): 2031.

[17]

Zhao Z., Li R., Zhang X. C., Zhang C. M., Liu J. X., Wang Y. W., Wang Y. F., Fan C. M. Chem. J. Chinese Universities, 2018, 39(8): 1775.

[18]

Jin X. L., Ye L. Q., Xie H. Q., Chen G. Coordin. Chem. Rev., 2017, 349: 84.

[19]

Ye L., Han C., Ma Z., Leng Y., Li J., Ji X., Bi D., Xie H., Huang Z. Chem. Eng. J., 2017, 307: 311.

[20]

Gao X. M., Dai Y., Fei J., Zhang Y., Fu F. Chem. J. Chinese Universities, 2018, 38(6): 1249.

[21]

Wu S., Wang C., Cui Y., Hao W., Wang T., Brault P. Mater. Lett., 2011, 65: 1344.

[22]

Xiong J., Cheng G., Qin F., Wang R., Sun H., Chen R. Chem. Eng. J., 2013, 220: 228.

[23]

Wu Y., Zhou Z., Tuo Y., Huang Y., Shen S. Mater. Lett., 2013, 98: 261.

[24]

Qin X., Cheng H., Wang W., Huang B., Zhang X., Dai Y. Mater. Lett., 2013, 100: 285.

[25]

Wang P., Wu Y., Shi J., Liu D., Dong W. Appl. Surf. Sci., 2014, 292: 1077.

[26]

Zhang X., Ai Z. H., Jia F. L., Zhang L. Z. J. Phys. Chem. C, 2008, 112: 747.

[27]

Wang W., Huang F., Lin X. Scripta Mater., 2007, 56: 669.

[28]

Wang X., Zhang Z., Xue Y., Nie M., Li H., Dong W. Mater. Lett., 2014, 136: 30.

[29]

Chen Y., Zhao Y., Li J., Han X. G. Chem. J. Chinese Universities, 2017, 38(11): 2045.

[30]

Gu Y. Y., Xiong Y. Q., Zhang X. X., Zhao L., Zhang S. C., Yan J. J. Cent. South Univ., 2018, 25: 1619.

[31]

Yamani Z. H. J. Nanosci. Nanotechno., 2018, 18: 4643.

[32]

Zhang G. Q., Cai L., Zhang Y. F., Wei Y. Eur. J., 2018, 24: 7434.

[33]

Yang J., Liang Y. J., Li K., Zhu Y. L., Liu S., Xu Q. R., Zhou W. J. Alloy Compd., 2017, 725: 1144.

[34]

Lin H. L., Ye H. F., Li X., Cao J., Chen S. F. Ceram. Int., 2014, 40: 9743.

[35]

Cheng J. S., Frezet L., Bonnet P., Wang C. Catal Lett., 2018, 148: 1281.

[36]

Zhang Y. Y., Sun X. G., Yang G. Z., Zhu Y. H., Si Y., Zhang J. M., Li Y. T. Mat. Sci. Semicon. Proc., 2014, 41: 193.

[37]

Pan J. B., Liu J. J., Zuo S. L., Khan U. A., Yu Y. C., Li B. S. Mater. Res. Bull., 2018, 103: 216.

[38]

Yang Y. F., Zhou F., Zhan S., Liu Y. J., Tian Y., He Q. C. Appl. Phys. A., 2017, 123: 29.

[39]

Liang J., Liu J., Xie Q., Bai S. Yu W.. Qian Y., J. Phys. Chem. B, 2005, 109: 9463.

[40]

Feng Y., Lu W., Zhang L., Bao X., Yue B., Lv Y., Shang X. Cryst. Growth Des., 2008, 8: 1426.

[41]

Huo Y., Jin Y., Zhang Y. J. Mol. Catal. A: Chem., 2010, 331: 15.

[42]

Di W., Willinger M. G., Ferreira R. A. S., Ren X., Lu S., Pinna N. J. Phys. Chem. C, 2008, 112: 18815.

[43]

Ren K., Zhang K., Liu J., Luo H., Huang Y., Yu X. Cryst. Eng. Comm., 2012, 14: 4384.

[44]

Zhao H., Zhang Y., Li G., Tian F., Tang H., Chen R. RSC Adv., 2016, 6: 7772.

[45]

Kim W. J., Pradhan D., Min B. K., Sohn Y. Appl. Catal. B: Environ., 2014, 147: 711.

[46]

Liu Y., Son W. J., Lu J., Huang B., Dai Y. M., Whangbo H. Chem-Eur. J., 2011, 17: 9342.

[47]

Jia Z. F., Wang F. M., Xin F., Zhang B. Q. Ind. Eng. Chem. Res., 2011, 50: 6688.

[48]

Dong F., Zhao W. R., Wu Z. B. Nanotechnology, 2008, 19: 365607.

[49]

Tang H., Berger H., Schmid P. E., Lévy F., Burri G. Solid State Commun., 1993, 87: 847.

[50]

Li J. J., Zhao W. F., Zhang G., Ma A. J., Chen W. X., Zhou H. W. Chem. J. Chinese Universities., 2018, 39(12): 2719.

[51]

Dai X. J., Luo Y. S., Zhang W. D., Fu S.Y. Dalton Trans., 2010, 39: 3426.

[52]

Qu P., Zhao J., Shen T., Hidaka H. J. Mol. Catal. A: Chem., 1998, 129: 257.

[53]

Al-Qaradawi S. S. Salman R., J. Photochem. Photobiol. A, 2002, 148: 161.

[54]

Zhang D., Li J., Wang Q., Wu Q. J. Mater. Chem. A, 2013, 1: 8622.

[55]

Wang X. J., Yang W. Y., Li F. T., Zhao J., Liu R. H., Liu S. J., Li B. J. Hazard. Mater, 2015.

[56]

Sun X. G. Y., Zhang Y. Li C. M., Zhang Z. F., Peng Z., Si H. Y., Zhang J. M., Li Y. T., J. Alloy. Compd., 2015, 46: 254.

[57]

Dutta D. P., Roy M., Tyagi A. K. Dalton Trans., 2012, 41: 10238.

[58]

Nethercot A. H. Jr. Phys. Rev. Lett., 1974, 33: 1088.

[59]

Cao J., Xu B.Y., Luo B. D., Lin H. L., Chen S. F. Catal. Commun., 2011, 257: 7083.

[60]

Bandara J., Kiwi J. New J. Chem., 1999, 23: 717.

[61]

Meng S. G., Li D. Z., Sun M., Li W. J., Wang J. X., Chen J., Fu X. Z., Xiao G. C. Catal. Commun., 2011, 12: 972.

[62]

Zhang L. S., Wang K. H., Yip H. Y., Hu C., Yu J. C., Chan C. Y., Wong P. K. Environ. Sci. Technol., 2010, 44: 1392.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/