Application of Enzymatic Promiscuity in Pharmaceutical Synthesis: Papain-catalyzed One-pot Synthesis of 1,4-Dihydropyridine Calcium Channel Antagonists and Derivatives

Ling Jiang , Wenting Ye , Weike Su , Chuanming Yu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 21 -25.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 21 -25. DOI: 10.1007/s40242-019-8273-8
Article

Application of Enzymatic Promiscuity in Pharmaceutical Synthesis: Papain-catalyzed One-pot Synthesis of 1,4-Dihydropyridine Calcium Channel Antagonists and Derivatives

Author information +
History +
PDF

Abstract

A new method for the synthesis of 1,4-dihydropyridine(1,4-DHP) calcium channel antagonists felodipine, nitrendipine and their derivatives via papain-catalyzed three-component reactions of aldehyde, methyl acetoacetate and ethyl 3-aminocrotonate was developed. Operational simplicity, mild reaction conditions and eco-friendliness are the key features of this protocol.

Keywords

Papain / Catalytic promiscuity / Multicomponent reaction / 1,4-Dihydropyridine calcium channel antagonist

Cite this article

Download citation ▾
Ling Jiang, Wenting Ye, Weike Su, Chuanming Yu. Application of Enzymatic Promiscuity in Pharmaceutical Synthesis: Papain-catalyzed One-pot Synthesis of 1,4-Dihydropyridine Calcium Channel Antagonists and Derivatives. Chemical Research in Chinese Universities, 2019, 35(1): 21-25 DOI:10.1007/s40242-019-8273-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mills K. T., Bundy J. D., Kelly T. N., Reed J. E., Kearney P. M., Reynolds K., Chen J., He J. Circulation, 2016, 134(6): 441.

[2]

Frieden T. R., Jaffe M. G. J. Clin. Hypertens., 2018, 20(2): 208.

[3]

Pascual I., Moris C., Avanzas P. Cardiovasc. Drugs Ther., 2016, 30(4): 357.

[4]

Azuaje J., Tubío C. R., Escalante L., Gómez M., Guitián F., Coelho A., Caamaño O., Gil A., Sotelo E. Appl. Catal. A: Gen., 2017, 530: 203.

[5]

Palermo V., Sathicq Á. G., Constantieux T., Rodríguez J., Vázquez P. G., Romanelli G. P. Catal. Lett., 2016, 146(9): 1634.

[6]

Ghosh P. P., Paul S., Das A. R. Tetrahedron Lett., 2013, 54(2): 138.

[7]

Baraldi P. T., Noël T., Wang Q., Hessel V. Tetrahedron Lett., 2014, 55(13): 2090.

[8]

Sheldon R. A., Woodley J. M. Chem. Rev., 2018, 118(2): 801.

[9]

Humble M. S., Berglund P. Eur.^J. Org. Chem., 2011.

[10]

González-Martínez D., Gotor V., Gotor-Fernández V. Eur.^J. Org. Chem., 2016.

[11]

Zhang M. J., Li R., He Y. H., Guan Z. Catal. Commun., 2017, 98: 85.

[12]

Koszelewski D., Paprocki D., Madej A., Borys F., Brodzka A., Os-taszewski R. Eur.^J. Org. Chem., 2017, 31: 4572.

[13]

Tian X. M., Zhang S. Q., Zheng L. Y. Enzyme Microb. Technol., 2016, 84: 32.

[14]

Zhang W. A., Zhao Z. Y., Wang Z., Guo C., Wang C. Y., Zhao R., Wang L. Catalysts, 2017, 7(6): 185.

[15]

Liang Y. R., Hu Y. J., Zhou X. H., Wu Q., Lin X. F. Tetrahedron Lett., 2017, 58(30): 2923.

[16]

Bihani M., Bora P. P., Verma A. K., Baruah R., Boruah H. P. D., Bez G. Bioorg. Med. Chem. Lett., 2015, 25(24): 5732.

[17]

Xie B. H., Guan Z., He Y. H. J. Chem. Technol. Biotechnol., 2012, 87(12): 1709.

[18]

Li Z. L., Zhou H. Y., Guan Z. Chinese^J. Org. Chem., 2017, 37(6): 1494.

[19]

Jiang L., Wang B., Li R. R., Shen S., Yu H. W., Ye L. D. Process Biochem., 2014, 49(7): 1135.

[20]

Jiang L., Yu H. W. Biotechnol. Lett., 2014, 36(1): 99.

[21]

Ma J. B., Wu L., Guo F., Gu J. L., Tang X. L., Jiang L., Liu J., Zhou J. H., Yu H. W. Appl. Microbiol. Biotechnol., 2013, 97(11): 4897.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/