S-1805/Ag/Au Hybrid Transparent Electrodes for ITO-free Flexible Organic Photovoltaics

Xuemei Wen , Fangshun Yi , Jinhai Ji , Yangang Bi , Wenyi Zhang , Wenquan Wang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 509 -513.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (3) : 509 -513. DOI: 10.1007/s40242-019-8269-4
Article

S-1805/Ag/Au Hybrid Transparent Electrodes for ITO-free Flexible Organic Photovoltaics

Author information +
History +
PDF

Abstract

We fabricated an S-1805/Ag/Au hybrid transparent electrode based on 4.4 nm ultrathin Au film, which exhibited a high transparency(T=78% at 550 nm), a low sheet resistance(R s=70 Ω/sq), and an extremely smooth surface(roughness=0.37 nm). The three-dimensional(3D) island growth mode of 4.4 nm Au film was resisted by the chemical bonding effect of the nonconductive S-1805 film and the wetting behavior of 0.6 nm Ag layer. The S-1805/Ag/Au hybrid transparent electrodes were used as the replacement of ITO anodes in flexible organic photovoltaics(OPVs), and the S-1805/Ag/Au-based OPVs resulted in the similar power conversion efficiency compared to ITO-based devices. High flexibility and mechanical robustness were demonstrated in the ITO-free OPVs without obvious degeneration in device performance after over 2000 repeated bending cycles.

Keywords

Ultrathin metal film / Hybrid transparent electrode / Flexible organic photovoltaics

Cite this article

Download citation ▾
Xuemei Wen, Fangshun Yi, Jinhai Ji, Yangang Bi, Wenyi Zhang, Wenquan Wang. S-1805/Ag/Au Hybrid Transparent Electrodes for ITO-free Flexible Organic Photovoltaics. Chemical Research in Chinese Universities, 2019, 35(3): 509-513 DOI:10.1007/s40242-019-8269-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Krebs F. C., Jørgensen M., Norrman K., Hagemann O., Alstrup J., Nielsen T. D., Fyenbo J., Larsen K., Kristensen J. Sol. Energy Mater. Sol. Cells, 2009, 93(4): 422.

[2]

Xu M., Feng J., Fan Z. J., Ou X. L., Zhang Z. Y., Wang H. Y., Sun H. B. Sol. Energy Mater. Sol. Cells, 2017, 169: 8.

[3]

Al Ibrahim M. Roth H. K., Zhokhavets U., Gobsch G., Sensfuss S., Sol. Energy Mater. Sol. Cells, 2005, 85(1): 13.

[4]

Bai Y., Feng J., Liu Y. F., Song J. F., Simonen J., Jin Y., Chen Q. D., Zi J., Sun H. B. Org. Electron., 2011, 12(11): 1927.

[5]

Krotkus S., Kasemann D., Lenk S., Leo K., Reineke S. Light Sci. Appl., 2016, 5: e16121.

[6]

Wang S., Gao Y., Su X. F., Yan L. K. Chem. Res. Chinese Universities, 2018, 34(5): 767.

[7]

Liang Y., Xu Z., Xia J., Tsai S. T., Wu Y., Li G., Ray C., Yu L. Adv. Mater., 2010, 22(20): e135.

[8]

Feng J., Li F., Gao W., Cheng G., Xie W., Liu S. Appl. Phys. Lett., 2002, 81(16): 2935.

[9]

Li X., Xie F., Zhang S., Hou J., Choy W. C. H. Light Sci. Appl., 2015, 4: e273.

[10]

Liang L., Liu J., Zhang Y. H., Hu L. W., Guo T., Yang W., Cao Y. Chem. Res. Chinese Universities, 2018, 34(3): 506.

[11]

Sannicolo T., Lagrange M., Cabos A., Celle C., Simonato J. P., Bellet D. Small, 2016, 12(44): 6052.

[12]

Hecht D. S., Hu L., Irvin G. Adv. Mater., 2011, 23(13): 1482.

[13]

Yin D., Feng J., Jiang N. R., Ma R., Liu Y. F., Sun H. B. ACS Appl. Mater. Interfaces, 2016, 8(45): 31166.

[14]

Kim C. L., Jung C. W., Oh Y. J., Kim D. E. NPG Asia Materials, 2017, 9: e438.

[15]

Liu Y. S., Feng J., Ou X. L., Cui H. f. Xu M., Sun H. B., Org. Electron., 2016, 31: 247.

[16]

Kang H., Jung S., Jeong S., Kim G., Lee K. Nat. Commun., 2015, 6: 6503.

[17]

Ma R., Feng J., Yin D., Sun H. B. Org. Electron., 2017, 43: 77.

[18]

Kee S., Kim N., Kim B. S., Park S., Jang Y. H., Lee S. H., Kim J., Kim J., Kwon S., Lee K. Adv. Mater., 2016, 28(39): 8625.

[19]

Guo L., Shao R. Q., Zhang Y. L., Jiang H. B., Li X. B., Xie S. Y., Xu B. B., Chen Q. D., Song J. F., Sun H. B. J. Phys. Chem. C, 2012, 116(5): 3594.

[20]

Yu M. C., Florent L., Ishiang S., Ricardo I. Nanotechnology, 2010, 21(13): 134020.

[21]

Zhang Y. L., Guo L., Xia H., Chen Q. D., Feng J., Sun H. B. Adv. Optical Mater., 2014, 2(1): 10.

[22]

Sun Q. S., Wang X. F., Li B. X., Wu Y. P., Zhang Z. Q., Zhang X. Y., Zhao X. D., Liu X. Y. Chem. Res. Chinese Universities, 2018, 34(3): 344.

[23]

Mayousse C., Celle C., Carella A., Simonato J. P. Nano Research, 2014, 7(3): 315.

[24]

Xiang H. Y., Li Y. Q., Zhou L., Xie H. J., Li C., Ou Q. D., Chen L. S., Lee C. S., Lee S. T., Tang J. X. ACS Nano, 2015, 9(7): 7553.

[25]

Paeng D., Yoo J. H., Yeo J., Lee D., Kim E., Ko S. H., Grigoropoulos C. P. Adv. Mater., 2015, 27(17): 2762.

[26]

Zhang C., Zhao D., Gu D., Kim H., Ling T., Wu Y. K. R., Guo L. J. Adv. Mater., 2014, 26(32): 5696.

[27]

Kaiser N. Appl. Opt., 2002, 41(16): 3053.

[28]

Kossoy A., Merk V., Simakov D., Leosson K., Kéna Cohen S. Maier S. A., Adv. Optical Mater., 2015, 3(1): 71.

[29]

Wang H., Wang H. Y., Gao B. R., Wang L., Yang Z. Y., Du X. B., Chen Q. D., Song J. F., Sun H. B. Nanoscale, 2011, 3(5): 2280.

[30]

Stec H. M., Williams R. J., Jones T. S., Hatton R. A. Adv. Funct. Mater., 2011, 21(9): 1709.

[31]

Bi Y. G., Feng J., Ji J. H., Chen Y., Liu Y. S., Li Y. F., Liu Y. F., Zhang X. L., Sun H. B. Nanoscale, 2016, 8(19): 10010.

[32]

Wanunu M., Vaskevich A., Rubinstein I. J. Am. Chem. Soc., 2004, 126(17): 5569.

[33]

Logeeswaran V. J., Kobayashi N. P., Islam M. S., Wu W., Chaturvedi P., Fang N. X., Wang S. Y., Williams R. S. Nano Lett., 2009, 9(1): 178.

[34]

Ou X. L., Feng J., Xu M., Sun H. B. Opt. Lett., 2017, 42(10): 1958.

[35]

Schubert S., Meiss J., Müller M. L., Leo K. Adv. Energy Mater., 2013, 3(4): 438.

[36]

Formica N., Ghosh D. S., Carrilero A., Chen T. L., Simpson R. E., Pruneri V. ACS Appl. Mater. Interfaces, 2013, 5(8): 3048.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/