Production of Bio-hydrogen Using Bio-oil as a Potential Biomass-derived Renewable Feedstock

Junxu Liu , Lijuan Zhu , Shengfei Wang , Yulan Wang , Yuting He , Quanxin Li

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 285 -291.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 285 -291. DOI: 10.1007/s40242-019-8268-5
Article

Production of Bio-hydrogen Using Bio-oil as a Potential Biomass-derived Renewable Feedstock

Author information +
History +
PDF

Abstract

The bio-oil derived from pyrolysis of straw can be selectively converted into high-purity hydrogen by coupling three steps: (i) steam reforming(SR) of different bio-oils, (ii) water-gas shift(WGS), and (iii) the removal of CO2. The catalytic SR reaction over the NiLaTiAl catalyst, coupled with a low-temperature WGS reaction with the CuZnAl catalyst, promoted the conversion of various oxygen-containing organic compounds in the bio-oil into hydrogen and carbon dioxide. Under the optimized condition, light bio-oil achieved the highest conversion(99.8%, molar fraction), with a high hydrogen yield of 16.4%(mass fraction) and a H2 purity of 99.94%(volume fraction). The carbon deposition on the NiLaTiAl catalyst was the main factor caused catalyst deactivation. Production of hydrogen from different bio-oil model compounds was also investigated in detail.

Keywords

Bio-oil / High-purity hydrogen / Integrated catalytic process / Oxygenated organic compound

Cite this article

Download citation ▾
Junxu Liu, Lijuan Zhu, Shengfei Wang, Yulan Wang, Yuting He, Quanxin Li. Production of Bio-hydrogen Using Bio-oil as a Potential Biomass-derived Renewable Feedstock. Chemical Research in Chinese Universities, 2019, 35(2): 285-291 DOI:10.1007/s40242-019-8268-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jin F., Fan M., Jia Q., Li Q. Chinese J. Chem. Phys., 2017, 30(3): 348.

[2]

Zhu L., Jin F., Fan M., Liu J., Chang R., Jia Q., Tang C., Li Q. Chem. Eng. Technol., 2018, 41(5): 1027.

[3]

Chang R., Zhu L., Jin F., Fan M., Liu J., Jia Q., Tang C., Li Q. J. Chem. Technol. Biotechnol., 2018, 93: 3292.

[4]

Tang C., Zhu L., Fan M., Li Q. Chinese J. Chem. Phys., 2018, 31(3): 1.

[5]

Czernik S., Evans R., French R. Catal. Today, 2007, 129(3): 265.

[6]

Guo L. J., Lu Y. J., Zhang X. M., Ji C. M., Guan Y., Pei A. X. Catal. Today, 2007, 129(3): 275.

[7]

Jain I. P. Int. J. Hydrogen Energy, 2009, 34(17): 7368.

[8]

Wu X., Fan M., Li Q. Chinese J. Chem. Phys., 2017, 30(4): 479.

[9]

Takanabe K., Aika K. I., Seshan K., Lefferts L. J. Catal., 2004, 227(1): 101.

[10]

Wang S. R., Liang T., Ru B., Guo X. J. Chem. Res. Chinese Universities, 2013, 29(4): 782.

[11]

Jia Q., Zhu L., Fan M., Li Q. Chinese J. Org. Chem., 2018, 38: 2101.

[12]

Navarro R. M., Peña M. A., Fierro J. L. G. Chem. Rev., 2007, 107(10): 3952.

[13]

Jiang P., Wu X., Liu J., Li Q. Chinese J. Chem. Phys., 2016, 29(5): 635.

[14]

Kapdan I. K., Kargi F. Enzyme Microb. Tech., 2006, 38(5): 569.

[15]

Haryanto A., Fernando S., Murali N., Adhikari S. Energy & Fuels, 2005, 19(5): 2098.

[16]

Vagia E. C., Lemonidou A. A. Int. J. Hydrogen Energy, 2007, 32(2): 212.

[17]

Galdámez J. R., García L., Bilbao R. Energy & Fuels, 2005, 19(3): 1133.

[18]

Seyedeyn-Azad F., Salehi E., Abedi J., Harding T. Fuel Process. Technol., 2011, 92(3): 563.

[19]

Salehi E., Azad F. S., Harding T., Abedi J. Fuel Process. Technol., 2011, 92(12): 2203.

[20]

Shejale A. D., Yadav G. D. Ind. Eng. Chem. Res., 2018, 57(14): 4785.

[21]

Kan T., Xiong J., Li X., Ye T., Yuan L., Torimoto Y., Yamamoto M., Li Q. Int. J. Hydrogen Energy, 2010, 35(2): 518.

[22]

Leng S., Wang X., He X., Liu L., Liu Y. E., Zhong X., Zhuang G., Wang J. G. Catal. Commun., 2013, 41: 34.

[23]

Hong Y. K., Lee D. W., Eom H. J., Lee K. Y. Appl. Catal. B, 2014, 150/151: 438.

[24]

Gunawan R., Li X., Lievens C., Gholizadeh M., Chaiwat W., Hu X., Mourant D., Bromly J., Li C. Z. Fuel, 2013, 111: 709.

[25]

Mazumder J., de Lasa H. Appl. Catal. B, 2014, 160/161: 67.

[26]

Remón J., Medrano J. A., Bimbela F., García L., Arauzo J. Appl. Catal. B, 2013, 132/133: 433.

[27]

Ye T., Yuan L., Chen Y., Kan T., Tu J., Zhu X., Torimoto Y., Yamamoto M., Li Q. Catal. Lett., 2009, 127(3): 323.

[28]

Xue H., Liu J., Xia T., Li Q. Chinese J. Chem. Phys., 2016, 29(4): 481.

[29]

Liu J., Jin F., Fan M., Zhu L., Tang C., Chang R., Jia Q., Li Q. Fuel, 2018, 226: 322.

[30]

Fan M., Ge S., Zhang Z., Xie Y., Li Q. Chinese J. Chem. Phys., 2018, 31(5): 725.

[31]

Wang S., Gu Y., Liu Q., Yao Y., Guo Z., Luo Z., Cen K. Fuel Process. Technol., 2009, 90(5): 738.

[32]

Guo X., Wang S., Guo Z., Liu Q., Luo Z., Cen K. Appl. Energ., 2010, 87(9): 2892.

[33]

Nogueira F. G. E., Assaf P. G. M., Carvalho H. W. P., Assaf E. M. Appl. Catal. B, 2014, 160/161: 188.

[34]

Rioche C., Kulkarni S., Meunier F. C., Breen J. P., Burch R. Appl. Catal. B, 2005, 61(1): 130.

[35]

Elliott D. C., Hart T. R., Neuenschwander G. G., Rotness L. J., Zacher A. H. Environ. Prog. Sustain., 2009, 28(3): 441.

[36]

Zheng J. L. J. Anal. Appl. Pyrol., 2007, 80(1): 30.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/