Exploration of Zinc(II) Complexes as Potent Inhibitors Against Protein Tyrosine Phosphatase 1B

Xinhua Li , Caixia Yuan , Liping Lu , Miaoli Zhu , Shu Xing , Xueqi Fu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 186 -192.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 186 -192. DOI: 10.1007/s40242-019-8265-8
Article

Exploration of Zinc(II) Complexes as Potent Inhibitors Against Protein Tyrosine Phosphatase 1B

Author information +
History +
PDF

Abstract

Although protein tyrosine phosphatases(PTPs) do not contain any metals, their activities can be inhibited by some metal complexes. Here we investigated the inhibition of two zinc complexes with Schiff base ligands against PTPs activity to explore their effect on the cellular metabolism. It has been found that they are potent inhibitors against four recombinant PTPs, including protein tyrosine phosphatase 1B(PTP1B), T cell protein tyrosine phosphatase( TCPTP), megakaryocyte protein tyrosine phosphatase 2(PTP-MEG2), and Src-homology phosphatase 1(SHP-1), with exception of Src-homology phosphatase 2(SHP-2). Moreover, they showed moderate selective inhibition against PTP1B with the IC50 values of 0.15 and 0.36 μmol/L. Meanwhile, the complexes also inhibited cellular phosphatase activities efficiently. Comparing the inhibitory potency over PTPs mediated by the zinc ion, we found that zinc complexes might be easily developed into potent and selective inhibitors against certain PTP by rationally modifying the organic ligands moieties.

Keywords

Zinc complex / Schiff base / Protein tyrosine phosphatase / Inhibitor

Cite this article

Download citation ▾
Xinhua Li, Caixia Yuan, Liping Lu, Miaoli Zhu, Shu Xing, Xueqi Fu. Exploration of Zinc(II) Complexes as Potent Inhibitors Against Protein Tyrosine Phosphatase 1B. Chemical Research in Chinese Universities, 2019, 35(2): 186-192 DOI:10.1007/s40242-019-8265-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alonso A., Sasin J., Bottini N., Friedberg I., Osterman A., Godzik A., Hunter T., Dixon J., Mustelin T. Cell, 2004, 117(6): 699.

[2]

Andersen J. N., Mortensen O. H., Peters G. H., Drake P. G., Iversen L. F., Olsen O. H., Jansen P. G., Andersen H. S., Tonks N. K., Moller N. P. H. Mol. Cell. Biol., 2001, 21(21): 7117.

[3]

Shivani V., Saurabh S. Curr. Mol. Pharmacol., 2018, 11(3): 191.

[4]

Hale A. J., ter Steege E., den Hergog J. Dev. Biol., 2017, 428(2): 283.

[5]

Bollu L. R., Mazumdar A., Savage M. I., Brown P. H. Clin. Cancer Res., 2017, 23(9): 2136.

[6]

Ruddraraju K. V., Zhang Z. Y. Mol. Biosyst., 2017, 13: 1257.

[7]

Zhang C. L., Sun X. N., Li C. Y., Cai J. Y., Wang J., Li Y. Z., Wang H. Y. Chem. J. Chinese Universities, 2017, 38(10): 1764.

[8]

Chai Q., Shen Q., Ma L. P., Wang X., Meng T., Li J. Y., Li J., Shen J. K. Chem. J. Chinese Universities, 2011, 32(2): 306.

[9]

Lu L. P., Zhu M. L. Antioxid. Redox Signal., 2014, 20(14): 2210.

[10]

Jia Y., Lu L., Zhu M., Yuan C., Xing S., Fu X. Eur. J. Med. Chem., 2017, 128: 287.

[11]

Li Y. H., Yuan C. X., Lu L. P., Zhu M. L., Fu X. Q., Xing S., Gao Z. Q. Chem. J. Chinese Universities, 2016, 37(12): 2138.

[12]

Maywald M., Wessels I., Rink L. Int. J. Mol. Sci., 2017, 18(11): 2222.

[13]

Maret W. Biometals, 2013, 26(2): 197.

[14]

Bellomo E., Massarotti A., Hogstrand C., Maret W. Metallomics, 2014, 6(7): 1229.

[15]

Haase H., Maret W. Biometals, 2005, 18(4): 333.

[16]

Wilson M., Hogstrand C., Maret W. J. Biol. Chem., 2012, 287(12): 9322.

[17]

Price K. A., Caragounis A., Paterson B. M., Filiz G., Volitakis I., Masters C. L., Barnham K. J., Donnelly P. S., Crouch P. J., White A. R. J. Med. Chem., 2009, 52(21): 6606.

[18]

Yuan C., Lu L., Gao X., Wu Y., Guo M., Li Y., Fu X., Zhu M. J. Biol. Inorg. Chem., 2009, 14(6): 841.

[19]

Zhang L., Zhang S. T., Zhang X. P., Sun J., Wang Y. S., Liu Y. L., Xue M. M., Wang Z., Xing S., Ma J. F., Li W. N., Fu X. Q. Chem. Res. Chinese Universities, 2013, 29(4): 730.

[20]

Yuan C. X., Lan S. F., Lu L. P. Chin. J. Inorg. Chem., 2015, 31(5): 915.

[21]

Clague M. J., Keder N. L., Butler A. Inorg. Chem., 1993, 32(22): 4754.

[22]

Sheldrick G. M. Correction Software, University of Göttingen, 1996.

[23]

Sheldrick G. M. Program for the Solution of Crystal Structure, 1997.

[24]

Farrugia L. J. J. Appl. Cryst., 1997, 30: 565.

[25]

Ma L., Lu L., Zhu M., Wang Q., Li Y., Xing S., Fu X., Gao Z., Dong Y. Dalton Trans., 2011, 40(24): 6532.

[26]

Woolley E. M., Tomkins J., Hepler L. G. J. Sol. Chem., 1972, 1: 341.

[27]

Yuan C., Lu L., Wu Y., Liu Z., Guo M., Xing S., Fu X., Zhu M. J. Inorg. Biochem., 2010, 104(9): 978.

[28]

Alain M., Michel B., Michel D. J. Chem. Edu., 1986, 63: 365.

[29]

Kumar S. M., Rajesh J., Anitha K., Dhahagani K., Marappan M., Gandhi N. I., Rajagopal G. Spectrochim. Acta A, 2015, 142(5): 292.

[30]

Gans P., Sabatini A., Vacca A. J. Chem. Soc., Dalton Trans., 1985.

[31]

Yuan C., Zhu M., Wang Q., Lu L., Xing S., Fu X., Jiang Z., Zhang S., Li Z., Zhu R., Ma L., Xu L. Chem. Commun., 2012, 48: 1153.

[32]

Ding F., Zhao G., Huang J., Sun Y., Zhang L. Eur. J. Med. Chem., 2009, 44(10): 4083.

[33]

Haj F. G., Markova B., Klaman L. D., Bohmer F. D., Neel B. G. J. Biol. Chem., 2003, 278: 739.

[34]

Zhang S., Chen L., Luo Y., Gunawan A., Lawrence D. S., Zhang Z. Y. J. Am. Chem. Soc., 2009, 131: 13072.

[35]

Yuan T., Wang Y., Zhao Z. J. Gu H., J. Bio. Chem., 2010, 285(20): 14861.

[36]

Chen Q., Lu L. P. Chinese J. Inorg. Chem., 2016, 32(6): 1001.

[37]

Li Y. H., Lu L. P., Zhu M. L., Yuan C. X., Feng S. S., Gao Z. Q. Chinese J. Struct. Chem., 2017, 36(2): 316.

[38]

Seale A. P., de Jesus L. A., Kim S., Choi Y., Lim H. B., Hwang C., Kim Y. Biotechnol. Lett., 2005, 27: 221.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/