Comparative Study of Electrochemical Performance and Microbial Flora in Microbial Fuel Cells by Using Three Kinds of Substrates

Yu Zhao , Lei Fan , Donghua Yang , Zhishuai Dong , Yuxue Wang , Xia An

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 292 -298.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 292 -298. DOI: 10.1007/s40242-019-8261-z
Article

Comparative Study of Electrochemical Performance and Microbial Flora in Microbial Fuel Cells by Using Three Kinds of Substrates

Author information +
History +
PDF

Abstract

This work aimed to investigate the distinct electrochemical performance and microbial flora of microbial fuel cells(MFCs) in relation to different single hazardous fed fuels. Three replicate MFCs were inoculated with the same microbial consortium from a coking wastewater treatment plant, wherein ammonium chloride(ammonium chloride-fed MFC, N-MFC), phenol(phenol-fed MFC, P-MFC) and potassium sulphide(potassium sulphide-fed MFC, S-MFC) were the sole substrates and main components of real coking wastewater. With initial concentrations of ammonium chloride, phenol and potassium sulphide of 0.75, 0.60 and 0.55 g/L, the removal efficiencies reached 95.6%, 90.6% and 99.9%, respectively, whereas the peak output power densities totalled 697, 324 and 1215 mW/m2. Microbial community analysis showed that the respective addition of substrate substantially altered the microbial community structure of anode biofilm, resulting in changes in relative abundance and emergence of new strains and further affecting the electrochemical properties of MFCs. The chemical oxygen demand(COD) removal efficiency of real coking wastewater, in which the inoculum was the combined biomass from the three MFCs, reached 82.3%.

Keywords

Comparison of microbial flora / Comparison of electrochemical performance / Sole substrate / Microbial fuel cell(MFC)

Cite this article

Download citation ▾
Yu Zhao, Lei Fan, Donghua Yang, Zhishuai Dong, Yuxue Wang, Xia An. Comparative Study of Electrochemical Performance and Microbial Flora in Microbial Fuel Cells by Using Three Kinds of Substrates. Chemical Research in Chinese Universities, 2019, 35(2): 292-298 DOI:10.1007/s40242-019-8261-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rabaey K., Verstraete W. Trends Biotechnol., 2005, 23(6): 291.

[2]

Bond D. R., Holmes D. E., Tender L. M., Lovley D. R. Science, 2002, 295(5554): 483.

[3]

Min B., Kim J. R., Oh S. E., Regan J. M., Logan B. E. Water Res., 2005, 39(20): 4961.

[4]

Min B., Logan B. E. Environ. Sci. Technol., 2004, 38(21): 5809.

[5]

Mohana K. G., Venkata M. S., Sarma P. N. J. Hazard. Mater., 2010, 177(1–3): 487.

[6]

Oh S. E., Logan B. E. Water Res., 2005, 39(19): 4673.

[7]

Rodrigo M. A., Cañizares P., Lobato J., Paz R., Sáez C., Linares J. J. J. Power Sources, 2007, 169(1): 198.

[8]

Huang L., Logan B. E. Appl. Microbial. Biot., 2008, 80(2): 349.

[9]

Liu R., Gao C., Zhao Y., Wang A., Lu S., Wang M., Maqbool F., Huang Q. Bioresource Technol., 2012, 123: 86.

[10]

Luo Y., Zhang R., Liu G., Li J., Li M., Zhang C. J. Hazard. Mater., 2010, 176(1–3): 759.

[11]

Solanki K., Subramanian S., Basu S. Bioresource Technol., 2013, 131: 564.

[12]

Song H., Guo W., Liu M., Sun J. Water Sci. Technol., 2013, 68(12): 2599.

[13]

Venkata M. S., Mohana K. G., Puruhotham R. B., Saravanan R., Sarma P. N. Biochem. Eng. J., 2008, 39(1): 121.

[14]

Zhang C., Li M., Liu G., Luo H., Zhang R. J. Hazard. Mater., 2009, 172(1): 465.

[15]

Zhang C., Liu G., Zhang R., Luo H. J. Environ. Sci. Heal. A, 2010, 45(2): 250.

[16]

Huang L. P., Yang X. H., Quan X., Chen J. W., Yang F. L. J. Chem. Technol. Biot., 2010, 85(5): 621.

[17]

Arredondo M. R., Kuntke P., Jeremiasse A. W., Sleutels T. H. J. A., Buisman C. J. N. Ter Heijne A., Environ. Sci. Wat. Res., 2015, 1(1): 22.

[18]

Zhang X., Zhu F., Chen L., Zhao Q., Tao G. Bioresource Technol., 2013, 146: 161.

[19]

Zhou X. T., Qu Y. P., Kim B. H., Du Y., Wang H. M., Li H. N., Dong Y., He W. H., Liu J., Feng Y. J. RSC Adv., 2015, 5(86): 70371.

[20]

Jayashree C., Arulazhagan P., Kumar S. A., Kaliappan S., Yeom I. T., Banu J. R. Biomass Bioenerg., 2014, 69: 249.

[21]

Zhu X., Ni J., Wei J., Chen P. Electrochim. Acta, 2011, 56(25): 9439.

[22]

Cai J., Zheng P. Bioresource Technol., 2013, 128: 760.

[23]

Sun M., Mu Z., Chen Y., Sheng G., Liu X., Chen Y., Zhao Y., Wang H., Yu H., Wei L., Ma F. Environ. Sci. Technol., 2009, 43(9): 3372.

[24]

Zhong L., Zhang S., Wei Y., Bao R. Biochem. Eng. J., 2017, 124: 6.

[25]

Luo Y., Zhang R. D., Liu G. L., Li J., Li M. C., Zhang C. P. J. Hazard Mater., 2010, 176(1–3): 759.

[26]

Chen S. S., Zhang C. P., Liu G. L., Zhang R. D., Li M. C., Quan X. C. Environ. Sci., 2010, 31(9): 2148.

[27]

Zhang C. P., Li M. C., Liu G. L., Luo H. P., Zhang R. D. J. Hazard. Mater., 2009, 172(1): 465.

[28]

Minhalma M., Maria N. P. J. Membrane Sci., 2004.

[29]

Logan B. E., Hamelers B., Rozendal R., Schroder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaer K. Environ. Sci. Technol., 2006, 40(17): 5181.

[30]

National Environmental Protection Agency, Water Quality Analysis, China Environmental Science Press, Beijing, 2009, 535

[31]

Ma J., Wang Z., Li X., Wang Y., Wu Z. Environ. Prog. Sustain., 2014, 33: 290.

[32]

Ha P. T., Tae B., Chang I. S. Energ. Fuel., 2007, 22(1): 164.

[33]

Kim G. T., Webster G., Wimpenny J. W. T., Kim B. H., Kim H. J., Weightman A. J. J. Appl. Microbiol., 2006, 101(3): 698.

[34]

Zhang Y., Min B., Huang L., Angelidaki I. Bioresource Technol., 2011, 102(18): 1166.

[35]

Zhen H., Jin J. K., Yan B. W., Yue L. H., Florian M., Kennethh N. Environ. Sci. Technol., 2009, 43: 3391.

[36]

Boll M., Fuchs G. Biol. Chem., 2005, 386(10): 989.

[37]

Sun M., Mu Z. X., Chen Y. P., Sheng G. P., Liu X. W., Chen Y. Z., Zhao Y., Wang H. L., Yu H. Q., Li W., Ma F. Environ. Sci. Technol., 2009, 43(9): 3372.

[38]

Gralnick J. A., Newman D. K. Extracellular Respiration Mol. Microbiol., 2007, 65(1): 1.

[39]

Hernandez M. E., Kappler A., Newman D. K. Appl. Environ. Microb., 2004, 70(2): 921.

[40]

Raghavulu S. V., Babu P. S., Goud R. K., Subhash G. V., Srikanth S., Mohan S. V. RSC Adv., 2012, 2(2): 677.

[41]

Srikanth S., Mohan S. V. Bioresource Technol., 2012, 123: 480.

[42]

Velvizhi G., Babu P. S., Mohanakrishna G., Srikanth S., Mohan S. V. RSC Adv., 2012, 2(4): 1379.

[43]

Chen J. F., Hu Y. Y., Zhang L. H., Huang W. T., Sun J. Bioresource Technol., 2017, 238: 273.

[44]

Schilirò T., Tommasi T., Armato C., Hidalgo D., Traversi D., Bocchini S., Gilli G., Pirri C. F. Energy, 2016, 106: 277.

[45]

Chen J. F., Zhang L. H., Hu Y. Y., Huang W. T., Niu Z. Y., Sun J. Bioresource Technol., 2017, 241: 220.

[46]

Jayapriya J., Ramamurthy V. Can.^J. Chem. Eng., 2014, 92(4): 610.

[47]

Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips F. J. P., Woodward J. C. Nature, 1996, 382(6590): 445.

[48]

Xing D., Cheng S., Logan B. E., Regan J. M. Appl. Microbiol. Biotechnol., 2010, 85(5): 1575.

[49]

Xiong H., Zou D., Zhou D., Dong S., Wang J., Rittmann B. E. Chem. Eng. J., 2017, 316: 7.

[50]

Qiu G., Song Y. H., Zeng P., Duan L., Xiao S. Bioresour. Technol., 2013, 142: 52.

[51]

Wang G. H., Cheng C. Y., Liu M. H., Chen T. Y., Hsieh M. H., Chung Y. C. Sensors., 2016, 16(8): 1272.

[52]

Said G., Antonia P. R., Francisco J. H. F., Sihem H. K., Francisco M. R., Joaquín Q. M. Chem. Eng. Technol., 2015, 38(9): 1511.

[53]

Stefano F., Ee H. T., Nico B., Kar M. L., Jurg K., Korneel R. Bioresource Technol., 2010, 101: 1233.

[54]

Ding J., Lu Z. Y., Liang F., Ding Z. W., Cheng M. Y., Shuk H., Raymond J. Z. Water Res., 2007, 110: 112.

[55]

Shun Z. Y., Lu C. H., Wang Y. Q., Yang G. Q., Li Z., Pei H. Int.^J. Syst. Evol. Micr., 2013, 63(7): 2618.

[56]

Liang J., Li W., Zhang H. L., Jiang X. B., Wang L. J., Liu X. D., Shen J. Y. Chem. Eng. J., 2018, 338: 176.

[57]

Wang L., Wu Y. C., Zheng Y., Liu L. D., Zhao F. RSC Adv., 2015, 5(69): 56430.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/