Experimental and Molecular Simulation of Volumetric Properties of Methyl Nonanoate, n-Dodecane, and Their Binary Mixtures

Dongyun Zang , Guanjia Zhao , Xiaona Liu , Jianguo Yin , Suxia Ma

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 299 -303.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 299 -303. DOI: 10.1007/s40242-019-8249-8
Article

Experimental and Molecular Simulation of Volumetric Properties of Methyl Nonanoate, n-Dodecane, and Their Binary Mixtures

Author information +
History +
PDF

Abstract

Densities of methyl nonanoate, n-dodecane, and their binary mixtures were investigated to provide the necessary data for their engineering applications as promising fuels and fuel additives. In the present work, densities were measured under atmospheric pressure at 293.15―463.15 K. The density data for the binary mixtures were fitted into a form of excess molar volume. The excess molar volumes were mostly positive, and the maximum value was obtained at molar fractions of n-dodecane between 0.5 and 0.6. Molecular simulations of specified systems were carried out by using four kinds of force fields, and the suitable force fields for describing the volume properties of the system were AMBER96 and OPLS-AA. The relative deviations for these two force fields between the simulated and the experimental data were well within ±4%, which meets the general engineering requirement.

Keywords

Methyl nonanoate / n-Dodecane / Density / Molecular dynamics

Cite this article

Download citation ▾
Dongyun Zang, Guanjia Zhao, Xiaona Liu, Jianguo Yin, Suxia Ma. Experimental and Molecular Simulation of Volumetric Properties of Methyl Nonanoate, n-Dodecane, and Their Binary Mixtures. Chemical Research in Chinese Universities, 2019, 35(2): 299-303 DOI:10.1007/s40242-019-8249-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo P., Wang Q. Y., Li P. F. Environmental Science & Tech., 2018, 77(4): 67.

[2]

Liu X. H., Jiang K. Modern Phys. Lett. B, 2018, 43(2): 57.

[3]

Zhong W., Tamilselvan P., Wang Q. Energy, 2018, 67(5): 153.

[4]

Geng P., Cao E., Tan Q. Renewable and Sustainable Energy Reviews, 2017, 71(2): 523.

[5]

Shameer P. M., Ramesh K. Energy, 2017, 118(3): 1334.

[6]

Motamedifar N., Shirneshan A. Fuel, 2018, 221(2): 233.

[7]

Wang X., Wang X., Chen J. Fuel, 2016, 166(3): 553.

[8]

Patra A., Samanta N. J. Chem. Phys., 2016, 145(16): 164.

[9]

Abbaspour M., Akbarzadeh H., Salemi S. J. Molecular Liquids, 2018, 250(8): 26.

[10]

Sun J., Qu J., Yan P. K. Natural, 2015, 23(1): 63.

[11]

Sharma M., Wanchoo R. K., Toor A. P. Industrial & Engineering Chem. Research, 2012, 51(44): 14367.

[12]

Haghbakhsh R., Raeissi S. J. Chem. Thermodynamics, 2018, 98(23): 533.

[13]

Cui S., Khomami B. J. Phys. Chem. B, 2014, 118(36): 10750.

[14]

Sobrino M., Eduardo I. J. Chem. Thermodynamics, 2016, 98(14): 231.

[15]

Tay W. J., Trusler J. P. M. J. Chem. Thermodynamics, 2018, 35(9): 156.

[16]

Zarei H., Mohamadkhani R. Fluid Phase Equilibria, 2016, 409(3): 19.

[17]

Mcatee Z. P., Heitz M. P. J. Chem. Thermodynamics, 2016, 93(16): 34.

[18]

Rao P. V., Venkatramana L., Gowrisankar M. J. Chem. Thermodynamics, 2016, 94(7): 186.

[19]

Aniya V. K., Muktham R. K., Alka K. Fuel, 2015, 161(15): 137.

[20]

Kawakami T., Shigemoto I., Matubayasi N. J. Chem. Phys., 2018, 148(21): 214903.

[21]

Bharadwaj V. S., Eagan N. M., Wang N. M. Chemphyschem, 2015, 16(13): 2810.

[22]

Belashchenko. Russian J. Phys. Chem. A, 2016, 90(9): 1707.

[23]

Caro M. A., Laurila T., Lopez-Acevedo O. J. Chem. Phys., 2016, 145(24): 244504.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/