Synthesis and Properties of Novel Fluorescence Probe Based on 1,8-Naphthalimide for Detection of Hydrogen Sulfide

Yunxia Ma , Jie Zhang , Hongmei Qu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 5 -11.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 5 -11. DOI: 10.1007/s40242-019-8239-x
Article

Synthesis and Properties of Novel Fluorescence Probe Based on 1,8-Naphthalimide for Detection of Hydrogen Sulfide

Author information +
History +
PDF

Abstract

Two fluorescence-enhanced probes, 4-(2,4-dinitrophenoxy)-N-(2-hydroxyethyl)-1,8-naphthalimide(NTE-1) and 4-(2,4-dinitrophenoxy)-N-(4-(2,4-dinitrophenoxy)phenyl)-1,8-naphthalimide(NTE-2), have been designed and synthesized for detection of H2S. 4-Hydroxy-1,8-naphthalimide as fluorophore in combination with 2,4-dinitrophenyl ether as H2S response site constructed the fluorescence probes. The consequences showed that both NTE-1 and NTE-2 displayed large red-shift(excess 100 nm) in absorption spectra and more than 30-fold fluorescence enhancement in response to H2S. Moreover, the dual site probe, NTE-2, displayed wider linear range between fluorescence intensity and concentration of H2S(0—40 μmol/L) compared with single site probe, which can be applied to quantitative detection of high concentration of H2S. The photoinduced electron transfer(PET) response mechanism of probe was further studied by analyzing the distributions of molecular orbital. Importantly, the probes have potential practical applications in detection of H2S.

Keywords

2,4-Dinitrophenyl ether / Dual site / Gaussian / Photoinduced electron transfer

Cite this article

Download citation ▾
Yunxia Ma, Jie Zhang, Hongmei Qu. Synthesis and Properties of Novel Fluorescence Probe Based on 1,8-Naphthalimide for Detection of Hydrogen Sulfide. Chemical Research in Chinese Universities, 2019, 35(1): 5-11 DOI:10.1007/s40242-019-8239-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kashfi K., Olson K. R. Biochem. Pharm., 2013, 85(5): 689.

[2]

Nagy P., Winterboum C. C. Chem. Res. Toxicol., 2010, 23(10): 1541.

[3]

Hughes M. N., Centelles M. N., Moore K. P. Free. Radical. Bio. Med., 2009, 47(10): 1346.

[4]

Zhang H., Jiao H., Jiang C. X., Wang S. H., Wei Z. J., Luo J. P., Jones R. L. Acta Physiol. Plant, 2010, 32(5): 849.

[5]

Ma H., Cheng X., Li G. Q., Chen S. H., Quan Z. L., Zhao S. Y., Niu L. Corros. Sci., 2000, 42(10): 1669.

[6]

Furne J., Saeed A., Levitt M. D. J. Physiol., 2008, 295(5): 1479.

[7]

Tang T., Jiang G. F. New J. Chem., 2017, 41(14): 6769.

[8]

Chen L. Y., Wu D., Lim C. S., Kim D., Nam S. J., Lee W., Kim G., Kim H. M., Yoon J. Chem. Commun., 2017, 53(35): 4791.

[9]

Lawrence N. S., Davis J., Jiang J., Jones T. G. J., Davis S. N., Compton R. G. Electroanalysis, 2000, 25(4): 661.

[10]

Li W. H., Sun W., Yu X. Q., Du L. P., Li M. Y. J. Fluoresc., 2013, 23(1): 181.

[11]

Li W., Zhu Z. T., Li Y. Y., Yi L., Xi Z. Chem. Commun., 2015, 51(52): 10463.

[12]

Liu H. Y., Zhao M., Qiao Q. L., Lang H. J., Xu J. Z., Xu Z. C. Chin. Chem. Lett., 2014, 25(7): 1060.

[13]

Fu Y. J., Yao H. W., Zhu X. Y., Guo X. F., Wang H. Anal. Chim. Acta, 2017, 994: 1.

[14]

Zhang J., Peng F. F., Dong X. C., Zhao W. L. Chem. Lett., 2015, 44(11): 1524.

[15]

Fan F. L., Jing J. Q., Chen X. M. Chin. J. Org. Chem., 2014, 34(10): 2178.

[16]

Gao B. Z., Cui L. X., Pan Y., Xue M. J., Zhu B. Y., Zhang G. M., Zhang C. H., Shuang S. M., Dong C. Spectrochim. Acta A, 2017, 173: 457.

[17]

Liu T. Y., Zhang X. F., Qiao Q. L., Zou C. Y., Cui J. N., Xu Z. C. Dyes Pigm., 2013, 99(3): 537.

[18]

Yuan L., Zuo Q. P. Sens. Actuat B: Chem., 2014, 196: 151.

[19]

Liu X. L., Du X. J., Dai C. G., Qin H.S. J. Org. Chem., 2014, 79(20): 9481.

[20]

And N. N., Ishitani A., Dixon D. A., Uda T. J. Phys. Chem. A., 2001, 105(20): 4953.

[21]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J.V., Cioslowski J., Fox D. J. GAUSSIAN 09, Revision C.01, Gaussian Inc., 2010.

[22]

Stephens P. J., Devilin F. G., Chabalowski C. F., Frisch M. J. J. Phys. Chem., 1994, 98: 11623.

[23]

Lu T., Chen F. W. J. Comput. Chem., 2012, 33(5): 580.

[24]

Takeshi Y., David P. T., Nicholas C. H. Chem. Phys. Lett., 2004, 393(1): 51.

[25]

Yu L. I., Jiang L. Chem. Res. Chinese Universities, 2014, 30(6): 997.

[26]

Liu T. Y., Xu Z. C., Spring D. R., Cui J. N. Org. Lett., 2013, 15(9): 2310.

[27]

Chinapang P., Ruangpornvisuti V., Sukwattanasinitt M., Rashatasakhon P. Dyes Pigm., 2015, 112: 236.

[28]

Montoya L.A., Pluth M. D. Chem. Commun., 2012, 48(39): 4767.

[29]

Bamesberger A., Schwartz C., Song Q., Han W. W., Wang Z., Cao H. S. New J. Chem., 2014, 38(3): 884.

[30]

Fleming C. L., Nalder T. D., Doeven E. H., Barrow C. J., Pfeffer F. M., Ashton T. D. Dyes Pigm., 2016, 126: 128.

[31]

Bae S. K., Heo C. H., Choi D. J., Sen D., Joe E. H., Cho B. C., Kim H. M. J. Am. Chem. Soc., 2013, 135: 9915.

[32]

Liu X. L., Du X. J., Dai C. G., Song Q. H. J. Org. Chem., 2014, 79(20): 9481.

[33]

Feng W. Q., Mao Z. Q., Liu L. Z., Liu Z. H. Talanta, 2017, 167: 134.

[34]

Das S. K., Lim C. S., Yang S. Y., Han J. H., Cho B. R. Chem. Commun., 2012, 48(67): 8395.

[35]

Liu K. R., Liu C., Shang H. M., Ren M. G., Lin W. Y. Sens. Actuat. B: Chem., 2018, 256: 342.

[36]

Zheng K. B., Lin W. Y., Tan L., Cheng D. Anal. Chim. Acta, 2015, 853: 548.

[37]

Zhou Y., Wang Y. K., Wang X. F., Zhang Y. J., Wang C. K. Chin. Phys. B., 2017, 26(8): 123.

[38]

Liu X. J., Lin T., Gao S. W., Ma R., Zhang J. Y., Cai X. C., Yang L., Teng F. Acta Phys.-Chem. Sin., 2012, 28(6): 1337.

[39]

Zhang Y. J., Yang W. J., Wang C. K. Chem. Phys., 2016, 468: 37.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/