Separation/Extraction/Detection of Chloramphenicol Using Binary Small Molecule Alcohol-Salt Aqueous Two-phase System Coupled with High-performance Liquid Chromatography

Donggang Guo , Liang Ni , Liang Wang , Li Shao

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 209 -215.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 209 -215. DOI: 10.1007/s40242-019-8216-4
Article

Separation/Extraction/Detection of Chloramphenicol Using Binary Small Molecule Alcohol-Salt Aqueous Two-phase System Coupled with High-performance Liquid Chromatography

Author information +
History +
PDF

Abstract

A green and sensitive sample separation and purification method coupled with high-performance liquid chromatography(HPLC) was developed for the analysis of chloramphenicol(CAP). One element small molecule alcohol-salt aqueous two-phase system(ATPS) can’t effectively adjust the polarity of the system, but binary small molecule alcohol-salt ATPS can adjust the polarity and improve the extraction efficiency of antibiotics. A binary aqueous two-phase system based on 1-propanol+2-propanol and NaH2PO4 system was formed and applied to the separation and purification of trace CAP in real samples. The influence factors on partition behaviors of CAP were discussed, including the types and mass of salts, the volume ratio of alcohol, the pH, temperature and the standing time. The optimal condition was found at pH=5.0, 2.5 g of NaH2PO4, 3.0 mL of 1-propanol and 2-propanol(volume ratio 1:1) and 30 °C by using response surface methodology. Under this optimal condition, the extraction efficiency of CAP reached 98.91%, and partition coefficient of CAP was 17.31.

Keywords

Binary small molecule alcohol aqueous two-phase system / Partition behavior / Chloramphenicol / Extraction efficiency

Cite this article

Download citation ▾
Donggang Guo, Liang Ni, Liang Wang, Li Shao. Separation/Extraction/Detection of Chloramphenicol Using Binary Small Molecule Alcohol-Salt Aqueous Two-phase System Coupled with High-performance Liquid Chromatography. Chemical Research in Chinese Universities, 2019, 35(2): 209-215 DOI:10.1007/s40242-019-8216-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pereira J. F. B., Ventura S. P. M., Silva F. A., Shahriari S., Freire M. G., Coutinho J. A. P. Separation and Purification Technology, 2013, 113: 83.

[2]

Dde Belval S. Le Breton B., Huddleston J., Lyddiatt A., Journal of Chromatography B, 1998, 711: 19.

[3]

Vicente F. A., Malpiedi L. P. e Silva F. A., Pessoa A., Coutinho J. A. P., Ventura S. P. M., Separation and Purification Technology, 2014, 135: 259.

[4]

Pereira M. M., Cruz R. A., Almeida M. R., Lima A. S., Coutinho J. A., Freire M. G. Process Biochem., 2016, 51(6): 781.

[5]

Schwienheer C., Prinz A., Zeiner T., Merz J. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 2015, 1002: 1.

[6]

Roy K., Lahiri S. Applied Radiation and Isotopes, 2009, 67(10): 1781.

[7]

Patrício P. R., Cunha R. C., Rodriguez V. S. J., Coelho Y. L., Mendes D. S. L. H. Hespanhol da Silva M. C., Separation and Purification Technology, 2016, 158: 144.

[8]

Rodrıguez O., Silverio S. C., Madeira P. P., Teixeira J. A., Macedo E. A. Industrial & Engineering Chemistry Research, 2007, 46: 8199.

[9]

Zafarani-Moattar M. T., Hamzehzadeh S., Nasiri S. Biotechnology Progress, 2011, 28(1): 146.

[10]

Hamzehzadeh S., Abbasi M. The Journal of Chemical Thermodynamics, 2015, 80: 102.

[11]

Lu Y., Chen B., Yu M., Han J., Wang Y., Tan Z. J. Food Chemistry, 2016, 210: 1.

[12]

Lu Y., Yao H., Li C., Han J., Tan Z. J., Yan Y. S. Food Chemistry, 2016, 192: 163.

[13]

Wang Y., Hu X., Han J., Ni L., Tang X., Hu Y. Food Chemistry, 2016, 194: 257.

[14]

Wysoczanska K., Macedo E. A. Journal of Chemical & Engineering Data, 2016, 61(12): 4229.

[15]

Sadeghi R., Maali M. Polymer, 2016, 83: 1.

[16]

Xu C., Dong W., Wan J., Cao X. J. Chromatogr., 2016.

[17]

Barbosa A. A., Bonomo R. C. F., Martins C. V., Fontan R. C. I., Júnior E. C. S., Minim L. A. Journal of Chemical & Engineering Data, 2016, 61(1): 3.

[18]

Hekayati J., Roosta A., Javanmardi J. Thermochimica Acta, 2016, 625: 47.

[19]

Shahriari S., Shahriari S. Journal of Molecular Liquids, 2014, 197: 65.

[20]

Malekghasemi S., Mokhtarani B., Hamzehzadeh S., Hajfarajollah H., Sharifi A., Mirzaei M. Fluid Phase Equilibria, 2016, 415: 193.

[21]

Wang Y., Hu S. P., Yan Y. S., Guan W. S. Calphad, 2009, 33(4): 726.

[22]

Wang Y., Hu S. P., Yan Y. S., Guan W. S. Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33(4): 726.

[23]

Wang Y., Hu S. P., Han J., Yan Y. S. Journal of Chemical & Engineering Data, 2010, 55(11): 4574.

[24]

João K. G., Tomé L. C., Gouveia A. S. L., Marrucho I. M. Journal of Chemical & Engineering Data, 2017, 62(4): 1182.

[25]

Zhao X., Wu H., Duan M., Hao X., Yang Q., Zhang Q., Huang X. Fluid Phase Equilibria, 2018, 459: 129.

[26]

Sun C., Cao W., Wu J., Hu X. Fluid Phase Equilibria, 2017, 432: 85.

[27]

Wazeer I., Hizaddin H. F. El Blidi L., Ali E., Hashim M. A., Hadj-Kali M. K., Journal of Chemical & Engineering Data, 2018, 63(3): 613.

[28]

Ferreira M. C., Bessa L. C. B. A., Meirelles A. J. A., Batista E. A. C. Fluid Phase Equilibria, 2018, 473: 286.

[29]

Kruber K. F., Krapoth M., Zeiner T. Fluid Phase Equilibria, 2017, 440: 54.

[30]

Saien J. Razi Asrami M., Journal of Chemical & Engineering Data, 2016, 62(11): 3663.

[31]

Cooke F. J. Oxford Handbook of Infectious Diseases and Microbiology, 2009.

[32]

Han J., Wang Y., Yu C.L., Li C. X., Yan Y. S., Liu Y. Analytica Chimica Acta, 2011, 685: 138.

[33]

Rogers R. D., Bond A. H., Bauer C. B. J. Chromatogr. B, 1996.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/