Characterization of Five Kinds of Wood Vinegar Obtained from Agricultural and Forestry Wastes and Identification of Major Antioxidants in Wood Vinegar

Zhanchao Li , Zhiquan Zhang , Lijie Wu , Hanqi Zhang , Ziming Wang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 12 -20.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 12 -20. DOI: 10.1007/s40242-019-8207-5
Article

Characterization of Five Kinds of Wood Vinegar Obtained from Agricultural and Forestry Wastes and Identification of Major Antioxidants in Wood Vinegar

Author information +
History +
PDF

Abstract

Wood vinegar(WV) has a powerful antioxidant activity, but it is unclear which components are responsible for the antioxidant activity. In the present study, the double-column retention index qualitative method was used for the identification of the major components in five kinds of WV. And the major antioxidants of wood vinegar were accurately identified with the aid of Pearson product-moment correlation coefficients and authentic standard samples. Our results demonstrate that phenolic compounds are mainly responsible for the powerful antioxidant activity. 2,6-Dimethoxyphenol is the most powerful antioxidant in WV. 2-Methoxyphenol and 3-methyl-1,2-cyclopentanedione also have an important influence on the antioxidant activity of WV. Our results suggest that the contents of 2-methoxyphenol, 2,6-dimethoxyphenol and 3-methyl-1,2-cyclopentanedione should act as the criteria for evaluating the antioxidant activity of WV. Our work will provide useful information for WV’s application in the fields of food and medicine as antioxidants.

Keywords

Antioxidant activity / 2,6-Dimethoxyphenol / 3-Methyl-1,2-cyclopentanedione / 2-Methoxyphenol / Retention index / Wood vinegar

Cite this article

Download citation ▾
Zhanchao Li, Zhiquan Zhang, Lijie Wu, Hanqi Zhang, Ziming Wang. Characterization of Five Kinds of Wood Vinegar Obtained from Agricultural and Forestry Wastes and Identification of Major Antioxidants in Wood Vinegar. Chemical Research in Chinese Universities, 2019, 35(1): 12-20 DOI:10.1007/s40242-019-8207-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai K., Jiang S., Ren C., He Y. Journal of the Science of Food and Agriculture, 2012, 92(1): 29.

[2]

Hwang Y. H., Matsushita Y. I., Sugamoto K., Matsui T. Journal of Microbiology and Biotechnology, 2005, 15(5): 1106.

[3]

Yatagai M., Nishimoto M., Hori K., Ohira T., Shibata A. Journal of Wood Science, 2002, 48(4): 338.

[4]

Wu Q., Zhang S., Hou B., Zheng H., Deng W., Liu D., Tang W. Bioresource Technology, 2015, 179: 98.

[5]

Yamauchi K., Manabe N., Matsumoto Y., Yamauchi K. E. Connec-tive Tissue Research, 2013, 54(6): 416.

[6]

Lu K. T., Wu L. Y. Holzforschung, 2013, 67(4): 413.

[7]

Yang L., Huang J. M., Zu Y. G., Ma C. H., Wang H., Sun X. W., Sun Z. Food Chemistry, 2011, 128(4): 1152.

[8]

Wang H., Zu G., Yang L., Zu Y. G., Wang H., Zhang Z. H., Zhang Y., Zhang L., Wang H. Z. Journal of Agricultural and Food Chemistry, 2011, 59(24): 13018.

[9]

Ahmeda A., Hossain M. A., Ismail Z. Asian Journal of Food and Agro-Industry, 2009, 2(3): 373.

[10]

Zhuang X., Wang L., Chen Q., Wu X., Fang J. Science China Tech-nological Sciences, 2017, 60(1): 84.

[11]

Huang F., Gao P., Chen J. Science in China Series E: Technological Sciences, 1999, 42(6): 644.

[12]

Dobele G., Dizhbite T., Ponomarenko J., Urbanovich I., Kreicberga J., Kampars V. Holzforschung, 2011, 65(4): 503.

[13]

Li J., Wang C., Yang Z. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 218.

[14]

Guillén M. D., Ibargoitia M. L. Journal of Agricultural and Food Chemistry, 1999, 47(10): 4126.

[15]

Mathew S., Zakaria Z. A. Applied Microbiology and Biotechnology, 2015, 99(2): 611.

[16]

Onoda A., Asanoma M., Nukaya H. Bioscience Biotechnology and Biochemistry, 2016, 80(5): 833.

[17]

Vitt S. M., Himelbloom B. H., Crapo C. A. Journal of Food Safety, 2001, 21(2): 111.

[18]

Ho C. L., Lin C. Y., Ka S. M., Chen A., Tasi Y. L., Liu M. L., Chiu Y. C., Hua K. F. PLoS One, 2013, 8(10): e75738.

[19]

Marumoto S., Yamamoto S. P., Nishimura H., Onomoto K., Yatagai M., Yazaki K., Fujita T., Watanabe T. Journal of Agricultural and Food Chemistry, 2012, 60(36): 9106.

[20]

Loo A., Jain K., Darah I. Food Chemistry, 2007, 104(1): 300.

[21]

Loo A., Jain K., Darah I. Food Chemistry, 2008, 107(3): 1151.

[22]

Ma X., Wei Q., Zhang S., Shi L., Zhao Z. Journal of Analytical and Applied Pyrolysis, 2011, 91(2): 338.

[23]

Mathew S., Zakaria Z. A., Musa N. F. Process Biochemistry, 2015, 50(11): 1985.

[24]

Yang J. F., Yang C. H., Liang M. T., Gao Z. J., Wu Y. W., Chuang L. Y. Molecules, 2016, 21(9): 1150.

[25]

Ma C., Song K., Yu J., Yang L., Zhao C., Wang W., Zu G., Zu Y. Journal of Analytical and Applied Pyrolysis, 2013, 104: 38.

[26]

Ma C., Li W., Zu Y., Yang L., Li J. Molecules, 2014, 19(12): 20821.

[27]

Li Z., Zhang Z., Wu L., Wang J., Liu Z., Zhang Z., Zhang H., Wang Z. Chem. Res. Chinese Universities, 2017, 33(3): 348.

[28]

Wei Q., Ma X., Dong J. Journal of Analytical and Applied Pyrolysis, 2010, 87(1): 24.

[29]

Kim D. O., Lee K. W., Lee H. J., Lee C. Y. Journal of Agricultural and Food Chemistry, 2002, 50(13): 3713.

[30]

Blois M. S. Nature, 1958, 181(4617): 1199.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/