Comb-shaped 2-Methylimidazolium Poly(arylene ether sulfone) Anion Exchange Membranes with High Alkaline Stability

Yurong Zhang , Xiaoguang Ge , Chengji Zhao , Hui Na

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 150 -156.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 150 -156. DOI: 10.1007/s40242-019-8199-1
Article

Comb-shaped 2-Methylimidazolium Poly(arylene ether sulfone) Anion Exchange Membranes with High Alkaline Stability

Author information +
History +
PDF

Abstract

A series of comb-shaped poly(arylene ether sulfone)s containing pendant 2-methyl-3-alkylimidazolium group(ImPAES-Cx, x=1, 6, 10) was prepared and characterized as novel anion exchange membranes. These Im-PAES-Cx membranes were obtained by benzylic bromination and imidazolium functionalization. The characteristic nano-phase separation structure was formed in membranes with longer alkyl side chains, as confirmed by small-angle X-ray scattering. The nano-phase separation structures endowed ImPAES-Cx membranes with improved ionic conductivity, dimensional stability(at least 60% decrease water uptake and swelling ratio at 60 °C) and mechanical properties, together with excellent alkaline stability. Especially, ImPAES-C6 membranes possessed enhanced hydroxide conductivity and chemical stability simultaneously. These results suggest that it is a feasible strategy to introduce appropriate length of alkyl side chains into anion exchange membranes(AEMs) to improve the performance.

Keywords

Comb-shaped structure / Imidazolium functionalized poly(arylene ether sulfone) / Alkaline stability / Membrane

Cite this article

Download citation ▾
Yurong Zhang, Xiaoguang Ge, Chengji Zhao, Hui Na. Comb-shaped 2-Methylimidazolium Poly(arylene ether sulfone) Anion Exchange Membranes with High Alkaline Stability. Chemical Research in Chinese Universities, 2019, 35(1): 150-156 DOI:10.1007/s40242-019-8199-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Varcoe J. R., Slade R. C. T. Fuel Cells, 2005, 5(2): 187.

[2]

Varcoe J. R., Atanassov P., Dekel D. R., Herring A. M., Hickner M. A., Kohl P. A., Kucernak A. R., Mustain W. E., Nijmeijer K., Scott K., Xu T. W., Zhuang L. Energ. Environ. Sci., 2014, 7(10): 3135.

[3]

Spendelow J. S., Wieckowski A. Phys. Chem. Chem. Phys., 2007, 9(21): 2654.

[4]

Sakamoto T., Matsumura D., Asazawa K., Martinez U., Serov A., Artyushkova K., Atanassov P., Tamura K., Nishihata Y., Tanaka H. Electrochim. Acta, 2015, 163: 116.

[5]

Wang Y. J., Qiao J., Baker R., Zhang J. Chem. Soc. Rev., 2013, 42(13): 5768.

[6]

Xu H., Fang J., Guo M., Lu X., Wei X., Tu S. J. Membr. Sci., 2010.

[7]

Dong X., Hou S., Mao H., Zheng J., Zhang S. J. Membr. Sci., 2016, 518: 31.

[8]

Hu B., Miao L., Bai Y., Lu C. Polym. Chem., 2017, 8(30): 4403.

[9]

Wang G., Weng Y., Chu D., Chen R., Xie D. J. Membr. Sci., 2009.

[10]

Weiber E. A., Jannasch P. J. Membr. Sci., 2016, 520: 425.

[11]

Zhao Z., Wang J., Li S., Zhang S. J. Power Sources, 2011, 196(10): 4445.

[12]

Gong X., Yan X., Li T., Wu X., Chen W., Huang S., Wu Y., Zhen D., He G. J. Membr. Sci., 2017, 523: 216.

[13]

Chen D., Hickner M. A. Macromolecules, 2013.

[14]

Xu S., Zhang G., Zhang Y., Zhao C., Zhang L., Li M., Wang J., Zhang N., Na H. J. Mater. Chem., 2012, 22(26): 13295.

[15]

Xu T. W., Liu Z. M., Yang W. H. J. Membr. Sci., 2005.

[16]

Yang J., Liu C., Hao Y., He X., He R. Electrochim. Acta, 2016, 207: 112.

[17]

Couture G., Alaaeddine A., Boschet F., Ameduri B. Prog. Polym. Sci., 2011, 36(11): 1521.

[18]

Qiu B., Lin B., Si Z., Qiu L., Chu F., Zhao J., Yan F. J. Power Sources, 2012, 217: 329.

[19]

Zhang F., Zhang H., Qu C. J. Mater. Chem., 2011, 21(34): 12744.

[20]

Rao A. H. N., Nam S., Kim T. H. Int.^J. Hydrogen Energ., 2014, 39(11): 5919.

[21]

Pan Y., Zhang Q., Yan X., Liu J., Xu X., Wang T., Hamouti I. E., Ruan X., Hao C., He G. J. Membr. Sci., 2018, 552: 286.

[22]

Long H., Pivovar B. J. Phys. Chem. C, 2014, 118(19): 9880.

[23]

Wang W., Wang S., Xie X., Lv Y., Ramani V. K. J. Membr. Sci., 2014, 462: 112.

[24]

Deavin O. I., Murphy S., Ong A. L., Poynton S. D., Zeng R., Herman H., Varcoe J. R. Energ. Environ. Sci., 2012, 5(9): 8584.

[25]

Lin B., Dong H., Li Y., Si Z., Gu F., Yan F. Chem. Mater., 2013, 25(9): 1858.

[26]

Gu F., Dong H., Li Y., Si Z., Yan F. Macromolecules, 2014, 47(1): 208.

[27]

Gao L., He G., Pan Y., Zhao B., Xu X., Liu Y., Deng R., Yan X. J. Membr. Sci., 2016, 518: 159.

[28]

Yang C., Wang S., Ma W., Jiang L., Sun G. J. Mater. Chem. A, 2015, 3(16): 8559.

[29]

Arges C. G., Ramani V. Proc. Natl. Acad. Sci. USA, 2013, 110(7): 2490.

[30]

Ran J., Wu L., Xu T. Polym. Chem., 2013, 4(17): 4612.

[31]

Li N. W., Leng Y. J., Hickner M. A., Wang C. Y. J. Am. Chem. Soc., 2013, 135(27): 10124.

[32]

Pan J., Chen C., Zhuang L., Lu J. T. Accounts Chem. Res., 2012, 45(3): 473.

[33]

Pan J., Chen C., Li Y., Wang L., Tan L. S., Li G. W., Tang X., Xiao L., Lu J. T., Zhuang L. Energ. Environ. Sci., 2014, 7(1): 354.

[34]

Hu Z., Tang W., Ning D., Zhang X., Bi H., Chen S. Fuel Cells, 2016, 16(5): 557.

[35]

Dai J., He G., Ruan X., Zheng W., Pan Y., Yan X. Int. J. Hydrogen Energ., 2016, 41(25): 10923.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/