Graphitic Carbon Nitride Microspheres Supported α-FeO(OH) Hybrids for Visible Light Photodegradation of MO

Junlin Wang , Yongjie Yi , Mengjia Li , Yue Chang , Fei Zha

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 319 -324.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (2) : 319 -324. DOI: 10.1007/s40242-019-8189-3
Article

Graphitic Carbon Nitride Microspheres Supported α-FeO(OH) Hybrids for Visible Light Photodegradation of MO

Author information +
History +
PDF

Abstract

Graphitic carbon nitride(g-C3N4) microspheres supported α-FeO(OH) hybrids[α-FeO(OH)/g-C3N4] were prepared by means of a self-assembly method in deionized water. By UV-visible diffuse reflectance spectroscopy, it has been confirmed that α-FeO(OH)/g-C3N4 has a wider absorption range than g-C3N4. The feature of α-FeO(OH)/g-C3N4 can be attributed to the efficient separation of the electron-hole pairs with photoluminescence spectra. The degradation rate of methyl orange(MO) is up to 99% under the optimal conditions of 110 min, initial concentration of 30 mg/L, an α-FeO(OH)/g-C3N4 dosage of 15 mg as well as visible light. The mechanism for this photocatalytic reaction was proposed, with hydroxyl radicals being a major active catalytic species.

Keywords

α-FeO(OH)/g-C3N4 / Self-assembly method / Photocatalyst / Methyl orange(MO) / Visible light

Cite this article

Download citation ▾
Junlin Wang, Yongjie Yi, Mengjia Li, Yue Chang, Fei Zha. Graphitic Carbon Nitride Microspheres Supported α-FeO(OH) Hybrids for Visible Light Photodegradation of MO. Chemical Research in Chinese Universities, 2019, 35(2): 319-324 DOI:10.1007/s40242-019-8189-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim D., Sakimoto K. K., Hong D., Yang P. Angew. Chem., Int. Ed., 2015, 54(18): 3259.

[2]

Wang J. S., Qin C. L., Wang H. J., Li J. D., Zhang X. L., Cheng S. Y., Jin L. Q. Chem. J. Chinese Universities, 2018, 39(11): 2500.

[3]

Guan X. H., Qu P., Guan X., Wang G. S. RSC Adv., 2014, 4(30): 15579.

[4]

Ohno T., Mitsui T., Matsumura M. Chem. Lett., 2003, 32(4): 364.

[5]

Wang S. M., Yan X. X., Zhu Y., Deng D. M., He H. B., Luo L. Q. Chem. Res. Chinese Universities, 2018, 34(5): 705.

[6]

Zhang K., Guo L. J. Catal. Sci. Technol., 2013, 3(7): 1672.

[7]

Liu G., Niu P., Sun C. H., Smith S. C., Chen Z. G., Lu G. Q., Chen H. M. J. Am. Chem. Soc., 2010, 132(33): 11642.

[8]

Ji H. H., Chang F., Hu X. F., Qin W., Shen J. W. Chem. Eng. J., 2013, 218(4): 183.

[9]

Shi L., Wang T., Zhang H. B., Chang K., Ye J. H. Adv. Funct. Mater., 2015, 25(33): 5360.

[10]

Zhang G. G., Zhang M. W., Ye X. X., Qiu X. Q., Li S., Wang X. C. Adv. Mater., 2014, 26(5): 805.

[11]

Liang Q. H., Li Z., Huang Z. H., Kang F. Y., Yang Q. H. Adv. Funct. Mater., 2015, 25(44): 6885.

[12]

Liu J., Wang H. Q., Chen Z. P., Moehwald H., Fiechter S., Krol R., Wen L. P., Jiang L., Antonietti M. Adv. Mater., 2015, 27(4): 712.

[13]

Shiraishi Y., Kanazawa S., Sugano Y., Tsukamoto D., Sakamoto H., Ichikawa S., Hirai T. ACS Catal., 2014, 4(3): 774.

[14]

Zhang Z. Y., Jiang D. L., Li D., He M. Q., Chen M. Appl. Catal. B., 2016, 183(4): 113.

[15]

Wang K., Li Q., Liu B. S., Cheng B., Ho W. K., Yu J. G. Appl. Catal. B, 2015.

[16]

Dong F., Zhao Z. W., Xiong T., Ni Z. L., Zhang W. D., Sun Y. J., Ho W. K. ACS Appl. Mater. Interfaces, 2013, 5(21): 11392.

[17]

Jin J., Liang Q., Ding C. Y., Li Z. Y., Xu S. J. Alloy. Compd., 2017, 691(1): 763.

[18]

Ding G. D., Wang W. T., Jiang T., Han B. X., Fan H. L., Yang G. Y. Chem. Cat. Chem., 2013, 5(1): 192.

[19]

Zhou X. S., Jin B., Chen R. Q., Peng F., Fang Y. P. Mater. Res. Bull., 2013, 48(4): 1447.

[20]

Peng W. C., Li X. Y. Catal. Commun., 2014, 49(5): 63.

[21]

Ge L., Han C. G., Liu J. Appl. Catal. B: Environ., 2011.

[22]

Liu L., Qi Y. H., Lu J. R., Lin S. L., An W. J., Liang Y. H., Cui W. Q. Appl. Catal. B: Environ., 2016, 183(1): 133.

[23]

Li H., Li W., Zhang Y. J., Wang T. S., Wang B., Xu W., Jiang L., Song W. G., Shun C. Y., Wang C. R. J. Mater. Chem., 2011, 21(22): 7878.

[24]

Jiang L. R., Zhao C., Huang Y. P., Li R. P. Environ. Chem., 2007, 26(1): 434.

[25]

Christensen A. N., Jensen T. R., Bahl C. R. H., DiMasid E. J. Solid State Chem., 2007, 180(4): 1431.

[26]

Zhou X. M., Yang H. C., Wang C. X., Mao X. B., Wang Y. S., Yang Y. L., Liu G. J. Phys. Chem. C, 2010, 114(10): 17051.

[27]

Chen H. F., Wei G. D., Han X., Li S., Wang P. P., Chubik M., Gromov A., Wang Z. P., Han W. J. Mater. Sci.: Mater. Electron., 2011, 22(3): 252.

[28]

Kakuta S., Numata T., Okayama T. Catal. Sci. Technol., 2014, 4(1): 164.

[29]

Xu Y., Schoonen M. A. A. Am. Mineral., 2000, 85(4): 543.

[30]

Sun J. H., Zhang J. S., Zhang M. W., Antonietti M., Fu X. Z., Wang X. C. Nature Communications, 2012, 3(4): 1139.

[31]

Yu J. G., Li Q., Liu S. W. Chem. Eur. J., 2013, 19(7): 2433.

[32]

Zhang Y., Zhao Z. Y., Chen J. R., Cheng L., Chang J., Sheng W. C., Chang H. Y., Chao S. S. Appl. Catal. B: Environ., 2015, 165(1): 715.

[33]

Sun Y. J., Zhang W. D., Xiong T., Zhao Z., Dong F., Wang R., Ho W. J. Colloid. Interf. Sci., 2014, 418(1): 317.

[34]

Wen J. Q., Xie J., Chen X. B., Li X. Appl. Surf. Sci., 2017, 391(1): 72.

[35]

Ou P., Xu G., Ren Z. H., Huo X. H., Han G. R. Mater. Lett., 2008.

[36]

Wang X. C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M. Nat. Mater., 2009.

[37]

Zheng D. D., Zhang G. G., Wang X. C. Appl.Catal. B: Environ., 2015, 179(1): 479.

[38]

Chen L. L., Chen M., Jiang D. L., Xie J. M. J. Mol. Catal. A: Chem., 2016, 425(1): 174.

[39]

Guesh K., Márquez-Álvarez C., Chebude Y., Díaz I. Appl. Surf. Sci., 2016, 378(1): 473.

[40]

Zhang G. H., Zhang T. Y., Li B., Jiang S., Zhang X., Hai L., Chen X. W., Wu W. B. Appl. Surf. Sci., 2018, 433(1): 963.

[41]

Theerthagiri J., Senthil R. A., Priya A., Madhavan J., Michael R. J. V., Ashokkumar M. RSC Adv., 2014, 4(72): 38222.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/