In situ Characterization of Phase Transition of Amorphous Poly(9,9-di-n-octyl-2,7-fluorene) Thin Film During Thermal Annealing

Shengfei Meng , Pengyue Wang , Liuran Chen , Guanghui Gao , Jidong Zhang

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 157 -162.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 157 -162. DOI: 10.1007/s40242-019-8159-9
Article

In situ Characterization of Phase Transition of Amorphous Poly(9,9-di-n-octyl-2,7-fluorene) Thin Film During Thermal Annealing

Author information +
History +
PDF

Abstract

Amorphous poly(9,9-di-n-octyl-2,7-fluorene)(PFO) thin films were characterized in situ via thermal annealing based on grazing incidence X-ray diffraction(GIXRD) profiles, UV-visible absorption spectrophotometry, and Fourier transform infrared spectroscopy(FTIR). The results of GIXRD indicated that the amorphous phase transformed into a crystalline phase when the annealing temperature was higher than 80 °C. Different outcomes were elicited for the intensities and d-spacings of the diffraction peaks below and above 80 °C, which were attributed to the formation of the κ-phase. The mechanism of phase transition was revealed by in situ UV-visible absorption and FTIR spectra, whereby the rearrangement of the side chains was dominant and the movement of the main chains was minimal, even when the annealing temperature was lower than 80 °C. In contrast, the rearrangement of the main chains was dominant when the temperature was higher than 80 °C.

Keywords

Polyfluorene / Phase transition / Thermal annealing / Liquid crystalline κ-phase

Cite this article

Download citation ▾
Shengfei Meng, Pengyue Wang, Liuran Chen, Guanghui Gao, Jidong Zhang. In situ Characterization of Phase Transition of Amorphous Poly(9,9-di-n-octyl-2,7-fluorene) Thin Film During Thermal Annealing. Chemical Research in Chinese Universities, 2019, 35(1): 157-162 DOI:10.1007/s40242-019-8159-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Su A. C. Journal of the Chinese Chemical Society, 2013, 57(3B): 564.

[2]

Khan Y., Ostfeld A. E., Lochner C. M., Pierre A., Arias A. C. Advanced Matter, 2016, 28(22): 4373.

[3]

Lee H., Kim M., Kim I., Lee H. Advanced Matter., 2016, 28(22): 4541.

[4]

Chen S. H., Su A. C., Su C. H. Macromolecules, 2005, 38(2): 6.

[5]

Chen S. H., Su A. C., Su C. H. Macromolecules, 2004, 37(18): 6.

[6]

Grell M., Bradley D. D. C., Ungar G., Hill J., Whitehead K. S. Macromolecules, 1999, 32(18): 7.

[7]

Wan H., Bai S. S., Li H. D., Ding J. Q., Yao B., Xie Z. Y., Wang L. X., Zhang J. D. Journal of Luminescence, 2011, 131(7): 1393.

[8]

Azuma H., Asada K., Kobayashi T., Naito H. Thin Solid Films, 2006, 509: 182.

[9]

Huang L., Zhang L., Huang X., Li T., Liu B., Lu D. The Journal of Physical Chemistry B, 2014, 118(3): 791.

[10]

Chen X., Wan H., Li H. D., Cheng F., Ding J. Q., Yao B., Xie Z. Y., Wang L. X., Zhang J. D. Polymer, 2012, 53(17): 3827.

[11]

Arif M., Volz C., Guha S. Physical Review Letters, 2006, 96(2): 025503.

[12]

Niu X. D., Liu J. B., Xie Z. Y. Organic Electronics, 2010, 11(7): 1273.

[13]

Yang H., Qu K. X., Li H. D., Cheng H., Zhang J. D. Macromolecular Chemistry and Physics, 2016, 217(14): 1579.

[14]

Yi J. P., Niu Q. L., Xu W. D., Hao L., Yang L., Chi L., Fang Y. T., Huang J. J., Xia R. D. Scientific Reports, 2016, 6: 8.

[15]

Yao B., Zhang B., Ding J., Xie Z., Zhang J., Wang L. Organic Electronics, 2013, 14(3): 897.

[16]

Guo Y., Jin Y., Su Z. Soft Matter, 2012, 8(10): 2907.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/