Effects of Cerium Oxides on the Catalytic Performance of Pd/CNT for Methanol Oxidation

Weimin Chen , Yu Zhang , Zhenyu Zhu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 133 -138.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 133 -138. DOI: 10.1007/s40242-019-8097-5
Article

Effects of Cerium Oxides on the Catalytic Performance of Pd/CNT for Methanol Oxidation

Author information +
History +
PDF

Abstract

The carbon nanotubes supported palladium(Pd/CNT) nanocatalysts were modified by cerium oxides/hydroxides and their catalytic performances for methanol oxidation were evaluated. Electrochemical measurements indicate that the introduction of cerium remarkably improves the catalytic activity of Pd/CNT catalysts towards methanol oxidation. X-Ray photoelectron spectra results reveal an interaction between palladium and cerium oxides. It is also observed that cerium-modified catalysts have excellent poison resistances, which is attributed to the poison-removal ability of cerium oxides/hydroxides. The highly oxidized cerium oxides/hydroxides have a strong ability to inhibit the accumulation of carbonaceous intermediates on the active sites of Pd catalysts.

Keywords

Electrocatalyst / Methanol oxidation / Palladium / Cerium / Modification

Cite this article

Download citation ▾
Weimin Chen, Yu Zhang, Zhenyu Zhu. Effects of Cerium Oxides on the Catalytic Performance of Pd/CNT for Methanol Oxidation. Chemical Research in Chinese Universities, 2019, 35(1): 133-138 DOI:10.1007/s40242-019-8097-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bianchini C., Shen P. K. Chem. Rev., 2009, 109(9): 4183.

[2]

Antolini E., Gonzalez E. R. J. Power Sources, 2010, 195(11): 3431.

[3]

Brouzgou A., Podias A., Tsiakaras P. J. Appl. Electrochem., 2013, 43(2): 119.

[4]

Kamarudin M. Z. F., Kamarudin S. K., Masdar M. S., Daud W. R. W. Int. J. Hydrogen Energy, 2013, 38(22): 9438.

[5]

Feng Y., Bin D., Yan B., Du Y., Majima T., Zhou W. J. Colloid Interf. Sci., 2017, 493: 190.

[6]

Zhu C., Wen D., Oschatz M., Holzschuh M., Liu W., Herrmann A. K., Simon F., Kaskel S., Eychmüller A. Small, 2015, 11(12): 1430.

[7]

Luo L. M., Zhang R. H., Chen D., Hu Q. Y., Zhang X., Yang C. Y., Zhou X. W. Electrochim. Acta, 2018, 259: 284.

[8]

Shen S., Guo Y., Luo L., Li F., Li L., Wei G., Yin J., Ke C., Zhang J. J. Phys. Chem. C, 2018, 122(3): 1604.

[9]

Chen Y., Chen M., Shi J., Yang J., Fan Y. Int. J. Hydrogen Energy, 2016, 41(38): 17112.

[10]

Yang Z. S., Wu J. J. Fuel Cells, 2012, 12(3): 420.

[11]

Fathirad F., Mostafavi A., Afzali D. Int. J. Hydrogen Energy, 2017, 42(5): 3215.

[12]

Kakati N., Maiti J., Lee S. H., Yoon Y. S. Int. J. Hydrogen Energy, 2012, 37(24): 19055.

[13]

Ma L., He H., Hsu A., Chen R. J. Power Sources, 2013, 241: 696.

[14]

Zhang K., Bin D., Yang B., Wang C., Ren F., Du Y. Nanoscale, 2015, 7: 12445.

[15]

Hao Y., Shen J., Wang X., Yuan J., Shao Y., Niu L., Huang S. Int. J. Hydrogen Energy, 2016, 41(4): 3015.

[16]

Cui X., Wang X., Xu X., Yang S., Wang Y. Electrochim. Acta, 2018, 260: 47.

[17]

Jurzinsky T., Kintzel B., Bär R., Cremers C., Tübke J. J. Electroanal. Chem., 2016, 776: 49.

[18]

Peng C., Yang W., Wu E., Ma Y., Zheng Y., Nie Y., Zhang H., Xu J. J. Alloy. Compd., 2017, 698: 250.

[19]

Zhang K. F., Guo D. J., Liu X., Li J., Li H. L., Su Z. X. J. Power Sources, 2006, 162(2): 1077.

[20]

Xu M. W., Gao G. Y., Zhou W. J., Zhang K. F., Li H. L. J. Power Sources, 2008, 175(1): 217.

[21]

Ou D. R., Mori T., Togasaki H., Takahashi M., Ye F., Drennan J. Langmuir, 2011, 27(7): 3859.

[22]

Scibioh M. A., Kim S. K., Cho E. A., Lim T. H., Hong S. A., Ha H. Y. Appl. Catal. B, 2008.

[23]

Guo D. J., Jing Z. H. J. Power Sources, 2010, 195(12): 3802.

[24]

Guo J. W., Zhao T. S., Prabhuram J., Chen R., Wong C. W. J. Power Sources, 2006, 156(2): 345.

[25]

Ye K. H., Zhou S. A., Zhu X. C., Xu C. W., Shen P. K. Electrochim. Acta, 2013, 90: 108.

[26]

Xu C., Tian Z., Shen P., Jiang S. P. Electrochim. Acta, 2008, 53(5): 2610.

[27]

Sun Z., Wang X., Liu Z., Zhang H., Yu P., Mao L. Langmuir, 2010, 26(14): 12383.

[28]

Zhou Z., Wang S., Zhou W., Wang G., Jiang L., Li W., Song S., Liu J., Sun G., Xin Q. Chem. Commun., 2003.

[29]

Radmilovic V., Gasteiger H. A., Ross P. N. J. Catal., 1995, 154(1): 98.

[30]

Zhou Y., Gao Y., Liu Y., Liu J. J. Power Sources, 2010, 195(6): 1605.

[31]

Tauster S. J., Fung S. C., Baker R. T. K., Horsley J. A. Science, 1981, 211: 1121.

[32]

Tauster S. J., Fung S. C. J. Catal., 1978, 55(1): 29.

[33]

Otomo J., Li X., Kobayashi T., Wen C., Nagamoto H., Takahashi H. J. Electroanal. Chem., 2004, 573(1): 99.

[34]

Mueller J. T., Urban P. M. J. Power Sources, 1998, 75(1): 139.

[35]

Müller J. T., Urban P. M., Hölderich W. F. J. Power Sources, 1999, 84(2): 157.

[36]

Hsing I. M., Wang X., Leng Y. J. J. Electrochem. Soc., 2002.

[37]

Li K., Zhao P. Mater. Res. Bull., 2010, 45(2): 243.

[38]

Wang S., Gu F., Li C., Cao H. J. Cryst. Growth, 2007, 307(2): 386.

[39]

Yu S., Liu Q., Yang W., Han K., Wang Z., Zhu H. Electrochim. Acta, 2013, 94: 245.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/