Tailoring Cationic Helical Polypeptides for Efficient Cytosolic Protein Delivery

Ruijue Wang , Kai Sheng , Yingqin Hou , Jialing Sun , Hua Lu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 134 -138.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 134 -138. DOI: 10.1007/s40242-019-0060-z
Article

Tailoring Cationic Helical Polypeptides for Efficient Cytosolic Protein Delivery

Author information +
History +
PDF

Abstract

Protein delivery is of central importance for both diagnostic and therapeutic applications. However, protein delivery faces challenges including poor endosomal escape and thus limited efficiency. Here, we report the facile construction and screening of a small library of cationic helical polypeptides for cytosolic protein delivery. The library is based on a random copolymer poly(γ-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}esteryl-L-glutamate)-randompoly(γ-6-chlorohexyl-L-glutamate)[P(EG3-r-ClC6)Glu], which is then modified with various pyridine derivatives and alkyl thiols. Flow Cytometry, confocal laser scanning microscopy, and viability assay collaboratively identify two leading polymers, showing efficient delivery of enhanced green fluorescent protein(eGFP) and low cytotoxicity. This finding is further validated by the cytosolic delivery of RNase A and cytochrome C(Cyt C) to HeLa cells in the viability assay. Together, this work demonstrates that high-throughput screening is an effective and viable approach to the selection of cationic helical polypeptides for the cytosolic delivery of functional proteins.

Keywords

Cationic helical polypeptide / Protein delivery / Cytosolic protein

Cite this article

Download citation ▾
Ruijue Wang, Kai Sheng, Yingqin Hou, Jialing Sun, Hua Lu. Tailoring Cationic Helical Polypeptides for Efficient Cytosolic Protein Delivery. Chemical Research in Chinese Universities, 2020, 36(1): 134-138 DOI:10.1007/s40242-019-0060-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Leader B, Baca Q J, Golan D E. Nat. Rev. Drug Discovery, 2008, 7: 21.

[2]

Ray M, Lee Y W, Scaletti F, Yu R J, Rotello V M. Nanomedicine, 2017, 12: 941.

[3]

Liu X, Wu F, Ji Y, Yin L. Bioconjug. Chem., 2019, 30: 305.

[4]

Lv J, Fan Q Q, Wang H, Cheng Y. Biomaterials, 2019, 218: 119358.

[5]

Yang X T, Tang Q, Jiang Y, Zhang M, Wang M, Mao L Q. J. Am. Chem. Soc., 2019, 141: 3782.

[6]

Fu A, Tang R, Hardie J, Farkas E M, Rotello M V. Bioconjug. Chem., 2014, 25: 1602.

[7]

Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Huang W. Adv. Mater., 2019, 31: 1902791.

[8]

Gu Z, Biswas A, Zhao M, Tang Y. Chem. Soc. Rev., 2011, 40: 3638.

[9]

Dahan R, Barnhart C B, Li F, Yamniuk P A, Korman J A, Ravetch V J. Cancer Cell, 2016, 29: 820.

[10]

Leonard W J, Lin J X, O’Shea J. Immunity, 2019, 50(4): 832.

[11]

Simeon R L, Chamoun A M, McMillin T, Chen Z. ACS Chem. Biol., 2013, 8(12): 2678.

[12]

McNaughton B R, Cronican J J, Thompson D B. Proc. Natl. Acad. Sci. USA, 2009, 106(15): 6111.

[13]

Mueller J, Kretzschmar I, Volkmer R, Boisguerin P. Bioconjug. Chem., 2008, 19: 2363.

[14]

Futaki S, Nakase I. Acc. Chem. Res., 2017, 50(10): 2449.

[15]

Zuris J A, Thompson D B, Shu Y, Guilinger J P, Bessen J L, Hu J H, Maeder M L, Joung J K, Chen Z, Liu R. Nat. Biotechnol., 2015, 33: 73.

[16]

Kim Y B, Zhao K T, Thompson D B, Liu D R. Nat. Commun., 2019, 10(1): 2905.

[17]

Zhang P, Steinborn B, Lachelt U, Zahler S, Wagner E. Biomacromolecules, 2017, 18: 2509.

[18]

Wang M, Sun S, Neufeld C I, Perez-Ramirez B, Xu Q. Angew. Chem. Int. Ed., 2014, 53: 13444.

[19]

Dutta K, Hu D, Zhao B, Ribbe A E, Zhuang J M, Thayumanavan S. J. Am. Chem. Soc., 2017, 139: 5676.

[20]

Jian Y Y, Lu H X, Chen F, Callari M, Pourgholami M, Morris D L, Stenzel M H. Biomacromolecules, 2016, 17: 808.

[21]

Su S, Wang Y Y, Du F S, Lu H, Li Z C. Adv. Funct. Mater., 2018, 28: 1805287.

[22]

Yan M, Du J, Gu Z, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Zhou H, Liu Z, Segura T, Tang Y, Lu Y. Nat. Nanotech., 2010, 5: 48.

[23]

Kuan S L, Ng D Y, Wu Y, Fortsch C, Barth H, Doroshenko M, Koynov K, Meier C, Weil T. J. Am. Chem. Soc., 2013, 135: 17254.

[24]

Zhang J, Wu L, Meng F, Wang Z, Deng C, Liu H, Zhong Z. Langmuir, 2012, 28: 2056.

[25]

Ding L, Jiang Y, Zhang J, Klok H A, Zhong Z. Biomacromolecules, 2018, 19: 555.

[26]

He H, Chen Y, Li Y, Song Z, Zhong Y, Zhu R, Cheng J, Yin L. Adv. Funct. Mater., 2018, 28: 1706710.

[27]

Lee Y, Lshii T, Kim H, Nishiyama N, Hayakawa Y, Itaka K, Kataoka K. Angew. Chem. Int. Ed., 2010, 122: 2606.

[28]

Yu C, Tan E, Xu Y, Lv J, Cheng Y. Bioconjugate Chem., 2019, 30(2): 413.

[29]

Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Lv J, Gao X, Wang X, Wang H, Chen H, He X, Li L, Cheng Y. Nano Lett., 2017, 17: 1678.

[30]

Liu C, Shen W, Li B, Li T, Chang H, Cheng Y. Chem. Mater., 2019, 31: 1956.

[31]

Prior T I, Fitzgerald D J, Pastan I. Biochemistry, 1992, 31: 3555.

[32]

Prior T I, Fitzgerald D J, Pastan I. Cell, 1991, 64: 1017.

[33]

Rizk S S, Luchniak A, Uysal S, Brawley C M, Rock R S, Kossiakoff A A. Proc. Natl. Acad. Sci. USA, 2009, 106(27): 11011.

[34]

Zhang Z, Shen W, Ling J, Yan Y, Hu J, Cheng Y. Nat. Commun., 2018, 9: 1377.

[35]

Li G, Lei Q, Wang F, Deng D, Wang S, Tian L, Wu S, Cheng Y, Liu Z. Small, 2019, 15: 1900936.

[36]

Lv J, He B, Yu J, Wang Y, Wang C, Zhang S, Wang H, Hu J, Zhang Q, Cheng Y. Biomaterials, 2018, 182: 167.

[37]

Li G, Yuan S, Deng D, Ou T, Li Y, Sun R, Cheng Y, Liu Z. Adv. Funct. Mater., 2019, 29: 1901932.

[38]

Liu C, Wang T, Wang H, Zhang S, Ping Y, Cheng Y. Science Advances, 2019, 5: eaaw8922.

[39]

Panganiban B, Qiao B, Jiang T, Delre C, Obadia M M, Nguyen T D, Smith A A A, Hall A, Sit I, Crosby M G, Dennis P B, Drockenmuller E, Olvera M, Xu T. Science, 2018, 359(6381): 1239.

[40]

Song Z, Zheng N, Ba X, Yin L, Zhang R, Ma L, Cheng J. Biomacromolecules, 2014, 15: 1491.

[41]

Gabrielson N P, Lu H, Yin L, Li D, Wang F, Cheng J. Angew. Chem. Int. Ed., 2012, 51: 1143.

[42]

Yin L, Song Z, Kim H K, Zheng N, Tang H, Lu H, Gabrielson N P, Cheng J. Biomaterials, 2013, 34: 2340.

[43]

Zhang R, Zheng N, Song Z, Yin L, Cheng J. Biomaterials, 2014, 35: 3443.

[44]

Zhang R, Song Z, Yin L, Lu H, Gabrielson N P, Cheng J. WIREs Nanomedicine & Nanobiotechnology, 2015, 7: 98.

[45]

Hou Y, Zhou Y, Wang H, Sun J, Wang R, Sheng K, Yuan J, Hu Y, Chao Y, Liu Z, Lu H. ACS Cent. Sci., 2019, 5: 229.

[46]

Hou Y, Zhou Y, Wang H, Sun J, Wang R, Sheng K, Feng J, Yang S, Lu H. J. Am. Chem. Soc., 2018, 140: 1170.

[47]

Lu H, Wang J, Bai Y, Lang J W, Liu S, Lin Y, Cheng J. Nat. Commun., 2011, 2: 206.

[48]

Ornelas-Megiatto C, Wich P R, Fréchet J M J. J. Am. Chem. Soc., 2012, 134: 1902.

[49]

LaRochelle J R, Cobb G B, Steinauer A, Rhoades E, Schepartz A. J. Am. Chem. Soc., 2015, 137: 2536.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/