Engineering a Floxuridine-integrated RNA Prism as Precise Nanomedicine for Drug Delivery

Gaifang Pan , Yuan Ma , Jiao Zhang , Yuanyuan Guo , Fei Ding , Huan Ge , Qifeng Li , Xinyuan Zhu , Chuan Zhang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 274 -280.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 274 -280. DOI: 10.1007/s40242-019-0049-7
Article

Engineering a Floxuridine-integrated RNA Prism as Precise Nanomedicine for Drug Delivery

Author information +
History +
PDF

Abstract

Herein, we report a geometrically well-defined prism assembled by two floxuridine(F) integrated RNA strands as a precise nanomedicine for chemodrug delivery. Owing to the similarity between chemotherapeutic F and uridine(U), all uridines in the component RNA strands are replaced by F during their in vitro transcription syntheses. By specifically designing their sequences, F-containing S-shape tiles with the single-stranded loops are constructed and then further assemble into the RNA prism through T-junction interactions and sticky-end cohesions. The present study demonstrates that the F-integrated RNA prism can serve as an efficient platform for chemodrug delivery and anticancer treatment. We believe that the study would help the future development of RNA-based nanomedicine in various applications.

Keywords

Self-assembly / Floxuridine / RNA prism / Precise nanodrug / Drug delivery

Cite this article

Download citation ▾
Gaifang Pan, Yuan Ma, Jiao Zhang, Yuanyuan Guo, Fei Ding, Huan Ge, Qifeng Li, Xinyuan Zhu, Chuan Zhang. Engineering a Floxuridine-integrated RNA Prism as Precise Nanomedicine for Drug Delivery. Chemical Research in Chinese Universities, 2020, 36(2): 274-280 DOI:10.1007/s40242-019-0049-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Torre L, Bray F, Siegel R, Ferlay J, Lortet-Tieulent J, Jemal A. CA Cancer J. Clin., 2015, 65(2): 87.

[2]

Allen T. Cullis P., Adv. Drug Delivery Rev., 2013, 65(1): 36.

[3]

Soppimath K, Aminabhavi T, Kulkarni A, Rudzinski W. J. Controlled Release, 2001, 70(1/2): 1.

[4]

Lim H, Cho E, Shim J, Kim D, An E, Kim J. J. Colloid Interface. Sci., 2008, 320(2): 460.

[5]

Meng E, Zhong Z, Feijen J. Biomacromolecules, 2009, 10: 197.

[6]

Garcia-Fuentes M, Alonso M. J. Controlled Release, 2012, 767(2): 496.

[7]

Dorniani D, Kura A, Hussein-Al-Ali S, Hussein M, Fakurazi S, Shaari A, Ahmad Z. Sci. World J., 2014, 2014: 416354.

[8]

Li Y, Gao G, Lee D. Adv. Healthc. Mater, 2013, 2(3): 388.

[9]

Pan G, Jin X, Mou Q, Zhang C. Chin. Chem. Lett, 2017, 28(9): 1822.

[10]

Duncan B, Kim C, Rotello V. J. Controlled Release, 2010, 148(1): 122.

[11]

Liu Z, Robinson J, Tabakman S, Yang K, Dai H. Mater. Today, 2011, 74(7/8): 316.

[12]

Petros R, DeSimone J. Nat. Rev. Drug Discovery, 2010, 9(8): 615.

[13]

Keles E, Song Y, Du D, Dong W, Lin Y. Biomater. Sci., 2016, 4(9): 1291.

[14]

Lv H, Zhang S, Wang B, Cui S, Yan J. J. Controlled Release, 2006, 774(1): 100.

[15]

Zelphati O, Uyechi L, Barron L, Szoka F Jr. Biochim. Biophys. Acta, 1998, 7390(2): 119.

[16]

Jong W, Hagens W, Krystek P, Burger M, Sips A, Geertsma R. Biomaterials, 2008, 29(12): 1912.

[17]

Wu X, Wu C, Zhang C. Chin. J. Polym. Sci, 2017, 35(1): 1.

[18]

Fan C. Chin. Sci. Bull., 2019, 64(10): 987.

[19]

Yan J, Hu C, Wang P, Zhao B, Ouyang X, Zhou J, Liu R, He D, Fan C, Song S. Angew. Chem., Int. Ed., 2015, 54(8): 2431.

[20]

Pei H, Zuo X, Zhu D, Huang Q, Fan C. Acc. Chem. Res., 2014, 47(2): 550.

[21]

You M, Peng L, Shao N, Zhang L, Qiu L, Cui C, Tan W. J. Am. Chem. Soc., 2014, 736(4): 1256.

[22]

Hu Q, Li H, Wang L, Gu H, Fan C. Chem. Rev., 2019, 779(10): 6459.

[23]

Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y. ACS Nano, 2014, 8(1): 6633.

[24]

Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson G, Han J, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y. Nat. Biotechnol, 2018, 36(3): 258.

[25]

Lu X, Liu J, Wu X, Ding B. Chem. Asian J., 2019, 74(13): 2193.

[26]

Jiang Q, Liu S, Liu J, Wang Z, Ding B. Adv. Mater, 2019, 37(45): 1804785.

[27]

Liu J, Song L, Liu S, Jiang Q, Liu Q, Li N, Wang Z, Ding B. Nano Lett., 2018, 18(6): 3328.

[28]

Douglas S, Bachelet I, Church G. Science, 2012, 335(6070): 831.

[29]

Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X Angew. Chem., Int. Ed, 2017, 56(41): 12528.

[30]

Ma Y, Liu H, Mou Q, Yan D, Zhu X, Zhang C. Nanoscale, 2018, 70(18): 8367.

[31]

Ma Y, Mou Q, Zhu L, Su Y, Jin X, Feng J, Yan D, Zhu X, Zhang C. Chem. Commun., 2019, 55(46): 6603.

[32]

Guo Y, Zhang J, Ding F, Pan G, Li J, Feng J, Zhu X, Zhang C. Adv. Mater, 2019, 37(16): 1807533.

[33]

Zhang J, Guo Y, Ding F, Pan G, Zhu X, Zhang C Angew Chem. Int. Ed., 2019, 58(39): 13794.

[34]

Jasinski D, Haque F, Binzel D, Guo P. ACS Nano, 2017, 77(2): 1142.

[35]

Zuo H, Wu S, Li M, Li Y, Jiang W, Mao C. Angew. Chem., Int. Ed., 2015, 54(50): 15118.

[36]

Guo P. Nat. Nanotechnol, 2010, 5(12): 833.

[37]

Delebecque C, Lindner A, Silver P, Aldaye F. Science, 2011, 333(6041): 470.

[38]

Lee J, Hong J, Bonner D, Poon Z, Hammond P. Nat. Mater, 2012, 77(4): 316.

[39]

Kruspe S, Hahn U. Angew. Chem., Int. Ed, 2014, 53(39): 10541.

[40]

Yu J, Liu Z, Jiang W, Wang G, Mao C. Nat. Commun, 2015, 6(1): 5724.

[41]

Choi C, Hao L, Narayan S, Auyeung E, Mirkin C. Proc. Natl., 2013, 770(19): 7625.

[42]

Wang P, Rahman M, Zhao Z, Weiss K, Zhang C, Chen Z, Hurwitz S, Shin D, Ke Y. J. Am. Chem. Soc., 2018, 740(7): 2478.

[43]

Wang D, Yu C, Xu L, Shi L, Tong G, Wu J, Liu H, Yan D, Zhu X. J. Am. Chem. Soc, 2018, 740(28): 8797.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/