Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors

Cong Wang , Jiangyan Wang , Wenping Hu , Dan Wang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 68 -73.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 68 -73. DOI: 10.1007/s40242-019-0040-3
Article

Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors

Author information +
History +
PDF

Abstract

Hollow multishelled structures(HoMSs) Co3O4 with specially appointed shell number(double-, triple- and quadruple-) were accurately prepared by a sequential templating approach. Due to the superiorities of inimitable porous multishelled structure, triple-HoMSs Co3O4 achieved the best performance among all the samples with a specific capacitance of 1028.9 F/g at 10 mV/s and 688.2 F/g at 0.5 A/g, respectively. Furthermore, the electrode delivered a high rate performance(89.8% retention at 10 A/g) and excellent cycle stability(6.8% loss over 2000 cycles), showing a great promise for practical application in the future.

Keywords

Hollow multishelled structure / Cobalt oxide / Supercapacitor

Cite this article

Download citation ▾
Cong Wang, Jiangyan Wang, Wenping Hu, Dan Wang. Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors. Chemical Research in Chinese Universities, 2020, 36(1): 68-73 DOI:10.1007/s40242-019-0040-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AraveLeela M R, Gowda S R, Shaijumon M M, Ajayan P M. Adv. Mater., 2012, 24: 5045.

[2]

Xu Y, Wang X, An C, Wang Y, Jiao L, Yuan H. J. Mater. Chem. A, 2014, 2: 16480.

[3]

Ke Q, Tang C, Yang Z, Zheng M, Mao L, Liu H, Wang J. Electrochim. Acta, 2015, 163: 9.

[4]

Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar S G, Srinivasan S, Ramakrishna S, Yan Q. Adv. Funct. Mater., 2014, 24: 2155.

[5]

Wang G, Zhang L, Zhang J. Chem. Soc. Rev., 2012, 41: 797.

[6]

Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z. Adv. Mater., 2015, 27: 1117.

[7]

Zhang L, Zhao X. Chem. Soc. Rev., 2009, 38: 2520.

[8]

Chen S, Ramachandran R, Mani V, Sarawathi R. Int. J. Electrochem. Sci., 2014, 9: 4072.

[9]

Rakhi R B, Chen W, Cha D, Alshareef H N. Nano Lett., 2012, 12: 2559.

[10]

Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou X. Energy Environ. Sci., 2012, 5: 7883.

[11]

Fan H, Quan L, Yuan M, Zhu S, Wang K, Zhong Y, Chang L, Shao H, Wang J, Zhang J, Cao C. Electrochim. Acta, 2016, 188: 222.

[12]

Yan J, Wang Q, Wei T, Fan Z. Adv. Energy Mater., 2013, 4: 1.

[13]

Simon P, Gogotsi Y. Nat. Mater., 2008, 7: 845.

[14]

Wang D, Wang Q, Wang T. Inorg. Chem., 2011, 50: 6482.

[15]

Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X. ACS Appl. Mater. Inter., 2015, 7: 2280.

[16]

Yu X, Yu L, Wu H, Lou X. Angew. Chem., Int. Ed., 2015, 54: 5331.

[17]

Xia X, Tu J, Mai Y, Wang X, Gu C, Zhao X. J. Mater. Chem., 2011, 21: 9319.

[18]

Zhang Y, Wang Y, Xie Y, Cheng T, Lai W, Pang H, Huang W. Nanoscale, 2014, 6: 14354.

[19]

Du H, Jiao L, Wang Q, Yang J, Guo L, Si Y, Wang Y, Yuan H. Nano Res., 2013, 6: 87.

[20]

Chen Y, Li Z, Lou X. Angew. Chem., Int. Ed., 2015, 54: 10521.

[21]

Wang J, Tang H, Ren H, Yu R, Qian J, Mao D, Zhao H, Wang D. Adv. Sci., 2014, 1: 1400011.

[22]

Guo J, Yin Z, Zang X, Dai Z, Zhang Y, Huang W, Dong X. Nano Res., 2017, 10: 405.

[23]

Zhao X, Yu R, Tang H, Mao D, Qi J, Wang B, Zhang Y, Zhao H, Hu W, Wang D. Adv. Mater., 2017, 29: 1700550.

[24]

Chen M, Wang J, Tang H, Yang Y, Wang B, Zhao H, Wang D. Inorg. Chem. Front., 2016, 3: 1065.

[25]

Park G D, Lee J H, Lee J K, Kang Y C. Nano Res., 2014, 7: 1738.

[26]

Lai X, Halpert J E, Wang D. Energy Environ. Sci., 2012, 5: 5604.

[27]

Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kiisailus D, Zhao H, Tang Z, Wang D. Angew. Chem., Int. Ed., 2013, 125: 6545.

[28]

Dong Z, Ren H, Hessel C M, Wang J, Yu R, Jin Q, Yang M, Hu Z, Chen Y, Tang Z, Zhao H, Wang D. Adv. Mater., 2014, 26: 905.

[29]

Wang J, Wan J, Wang D. Acc. Chem. Res., 2019, 52: 2169.

[30]

Xu S, Hessel C M, Ren H, Yu R, Jin Q, Yang M, Zhao H, Wang D. Energy Environ. Sci., 2014, 7: 632.

[31]

Salhabi E., Zhao L., Wang J., Yang M., Wang B., Wang D., 2019, 58, 9078

[32]

Lai X, Li J, Korgel B A, Dong Z, Li Z, Su F, Du J, Wang D. Angew. Chem., Int. Ed., 2011, 123: 2790.

[33]

Lou X, Deng D, Lee J, Feng J, Archer L. Adv. Mater., 2008, 20: 258.

[34]

Kinsinger N M, Dudchenko A, Wong A, Kisailus D. ACS Appl. Mater. Interfaces, 2013, 5: 6247.

[35]

Xiong S, Yuan C, Zhang X, Xi B, Qian Y. Chem. Eur. J., 2009, 15: 5320.

[36]

Deng S, Xiao X, Xing X, Wu J, Wen W, Wang Y. J. Mol. Catal. A: Chem., 2015, 398: 79.

[37]

Xu J, Gao P, Zhao T. Energy Environ. Sci., 2012, 5: 5333.

[38]

Wang L, Liu X, Wang X, Yang X, Lu L. Curr. Appl. Phys., 2010, 10: 1422.

[39]

Zhang F, Yuan C, Lu X, Zhang L, Che Q, Zhang X. J. Power Sources, 2012, 203: 250.

[40]

Pal M, Rakshit R, Singh A K, Mandal K. Energy, 2016, 103: 481.

[41]

Fan M, Ren B, Yu L, Song D, Liu Q, Liu J, Wang J, Jing X, Liu L. Electrochim. Acta, 2015, 166: 168.

[42]

Liu X, Gao Y, Yang G. Nanoscale, 2016, 8: 4227.

[43]

Wang Y, Pan A, Zhu Q, Nie Z, Zhang Y, Tang Y, Liang S, Cao G. J. Power Sources, 2014, 272: 107.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/