Programmable Assembly of DNA-protein Hybrid Structures

Xue Li , Donglei Yang , Luyao Shen , Fan Xu , Pengfei Wang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 211 -218.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 211 -218. DOI: 10.1007/s40242-019-0038-x
Review

Programmable Assembly of DNA-protein Hybrid Structures

Author information +
History +
PDF

Abstract

DNA is the genetic information carrier for most known living organisms on Earth, while proteins are the functional component that carry out most biological processes. Many natural machineries are DNA-protein hybrid complexes to cooperatively and efficiently conduct sophisticated biological tasks. It has drawn increasing interest to the research field to construct artificial DNA-protein hybrid structures towards a variety of applications including biological studies, nanofabrication, biomedical research, etc. In this regard, here in this report we reviewed the up-to-date progress on making DNA-protein hybrid structures, with a particular focus on DNA nanotechnology-enabled programmable assembly of DNA-protein hybrid structures.

Keywords

DNA nanotechnology / Self-assembly / DNA-protein conjugation / DNA-protein hybrid structure

Cite this article

Download citation ▾
Xue Li, Donglei Yang, Luyao Shen, Fan Xu, Pengfei Wang. Programmable Assembly of DNA-protein Hybrid Structures. Chemical Research in Chinese Universities, 2020, 36(2): 211-218 DOI:10.1007/s40242-019-0038-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seeman N C. J. Theor. Biol., 1982, 99(2): 237.

[2]

Seeman N C. Nano Letters, 2001, 1(1): 22.

[3]

Yan H, Park S H, Finkelstein G, Reif J H, Labean T H. Science, 2003, 301(5641): 1882.

[4]

Seeman N C. Nature, 2003, 421(6921): 427.

[5]

He Y, Tian Y, Ribbe A E, Mao C. J. Am. Chem. Soc., 2006, 128(50): 15978.

[6]

Ke Y, Liu Y, Zhang J, Yan H. J. Am. Chem. Soc., 2006, 128(13): 4414.

[7]

Li Z, Wei B, Nangreave J, Lin C, Liu Y, Mi Y, Yan H. J. Am. Chem. Soc., 2009, 131(36): 13093.

[8]

Ke Y, Ong L L, Shih W M, Yin P. Science, 2012, 338(6111): 1177.

[9]

Wei B, Dai M, Yin P. Nature, 2012, 485(7400): 623.

[10]

Li J, Fan C H, Pei H, Shi J Y, Huang Q. Adv. Mater., 2013, 25(32): 4386.

[11]

Song C, Wang Z G, Ding B Q. Small, 2013, 9(14): 2382.

[12]

Wang P F, Wu S Y, Tian C, Yu G M, Jiang W, Wang G S, Mao C D. J. Am. Chem. Soc., 2016, 138(41): 13579.

[13]

Winfree E, Liu F, Wenzler L A, Seeman N C. Nature, 1998, 394(6693): 539.

[14]

He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C. Nature, 2008, 452(7184): 198.

[15]

Zheng J, Birktoft J J, Chen Y, Wang T, Sha R, Constantinou P E, Ginell S L, Mao C, Seeman N C. Nature, 2009, 461(7260): 74.

[16]

Ong L L, Hanikel N, Yaghi O K, Grun C, Strauss M T, Bron P, Lai-Kee-Him J, Schueder F, Wang B, Wang P, Kishi J Y, Myhrvold C, Zhu A, Jungmann R, Bellot G, Ke Y, Yin P. Nature, 2017, 552(7683): 72.

[17]

Song J, Li Z, Wang P, Meyer T, Mao C, Ke Y. Science, 2017, 357(6349): eaan3377.

[18]

Woods D, Doty D, Myhrvold C, Hui J, Zhou F, Yin P, Winfree E. Nature, 2019, 567(7748): 366.

[19]

Zhang Y, Pan V, Li X, Yang X, Li H, Wang P, Ke Y. Small, 2019, 15(26): e1900228.

[20]

Rothemund P W K. Nature, 2006, 440(7082): 297.

[21]

Andersen E S, Dong M, Nielsen M M, Jahn K, Subramani R, Mamdouh W, Golas M M, Sander B, Stark H, Cristiano L P O, Pedersen J S, Birkedal V, Besenbacher F, Gothelf K V, Kjems J. Nature, 2009, 459(7243): 73.

[22]

Dietz H, Douglas S M, Shih W M. Science, 2009, 325(5941): 725.

[23]

Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459(7245): 414.

[24]

Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. Science, 2011, 332(6027): 342.

[25]

Wang P F, Ko S H, Tian C, Hao C H, Mao C D. Chem. Commun., 2013, 49(48): 5462.

[26]

Iinuma R, Ke Y, Jungmann R, Schlichthaerle T, Woehrstein J B, Yin P. Science, 2014, 344(6179): 65.

[27]

Zhang F, Jiang S, Wu S, Li Y, Liu Y, Mao C. Nat. Nanotechnol., 2015, 10(9): 779.

[28]

Wang P, Gaitanaros S, Lee S, Bathe M, Shih W M, Ke Y. J. Am. Chem. Soc., 2016, 138(24): 7733.

[29]

Hong F, Zhang F, Liu Y, Yan H. Chem. Rev., 2017, 117(20): 12584.

[30]

Tikhomirov G, Petersen P, Qian L L. Nature, 2017, 552(7683): 67.

[31]

Wang P F, Meyer T A, Pan V, Dutta P K, Ke Y G. Chem., 2017, 2(3): 359.

[32]

Zhou K, Dong J, Zhou Y, Dong J, Wang M, Wang Q. Small, 2019, 15(26): e1804044.

[33]

Mattiroli F, Bhattacharyya S, Dyer P N, White A E, Sandman K, Burkhart B W, Byrne K R, Lee T, Ahn N G, Santangelo T J, Reeve J N, Luger K. Science, 2017, 357(6351): 609.

[34]

Gatchalian J, Wang X, Ikebe J, Cox K L, Tencer A H, Zhang Y, Burge N L, Di L, Gibson M D, Musselman C A, Poirier M G, Kono H, Hayes J J, Kutateladze T G. Nat. Commun., 2017, 8(1): 1489.

[35]

Zhou Y B, Gerchman S E, Ramakrishnan V, Travers A, Muyldermans S. Nature, 1998, 395(6700): 402.

[36]

Agback P, Baumann H, Knapp S, Ladenstein R, Hard T. Nat. Struct. Biol., 1998, 5(7): 579.

[37]

Driessen R P C, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar U D, White M F, Schiessel H, Van Noort J, Dame R T. Nucleic Acids Res., 2013, 41(1): 196.

[38]

Robinson H, Gao Y G, McCrary B S, Edmondson S P, Shriver J W, Wang A H J. Nature, 1998, 392(6672): 202.

[39]

Durniak K J, Bailey S, Steitz T A. Science, 2008, 322(5901): 553.

[40]

Knott G J, Doudna J A. Science, 2018, 361(6405): 866.

[41]

Nishimasu H, Ran F A, Hsu P D, Konermann S, Shehata S I, Dohmae N, Ishitani R, Zhang F, Nureki O. Cell, 2014, 156(5): 935.

[42]

Liszczak G P, Brown Z Z, Kim S H, Oslund R C, David Y, Muir T W. P. Natl. Acad. Sci. USA, 2017, 114(4): 681.

[43]

Deng W L, Shi X H, Tjian R, Lionnet T, Singer R H. P. Natl. Acad. Sci. USA, 2015, 112(38): 11870.

[44]

Fu Y, Rocha P P, Luo V M, Raviram R, Deng Y, Mazzoni E O, Skok J A. Nat. Commun., 2016, 7: 11707.

[45]

Fu J, Yang Y R, Dhakal S, Zhao Z, Liu M, Zhang T, Walter N G, Yan H. Nat. Protoc., 2016, 11(11): 2243.

[46]

Fu J, Liu M, Liu Y, Woodbury N W, Yan H. J. Am. Chem. Soc., 2012, 134(12): 5516.

[47]

McMillan J R, Mirkin C A. J. Am. Chem. Soc., 2018, 140(22): 6776.

[48]

Henning-Knechtel A, Knechtel J, Magzoub M. Nucleic. Acids Res., 2017, 45(21): 12057.

[49]

Zhao Z, Zhang M, Hogle J M, Shih W M, Wagner G, Nasr M L. J. Am. Chem. Soc., 2018, 140(34): 10639.

[50]

Liang S I, McFarland J M, Rabuka D, Gartner Z J. J. Am. Chem. Soc., 2014, 136(31): 10850.

[51]

Ke G L, Liu M H, Jiang S X, Qi X D, Yang Y R, Wootten S, Zhang F, Zhu Z, Liu Y, Yang C J, Yan H. Angew. Chem. Int. Ed., 2016, 55(26): 7483.

[52]

Marth G, Hartley A M, Reddington S C, Sargisson L L, Parcollet M, Dunn K E, Jones D D, Stulz E. ACS Nano, 2017, 11(5): 5003.

[53]

Rosen C B, Kodal A L, Nielsen J S, Schaffert D H, Scavenius C, Okholm A H, Voigt N V, Enghild J J, Kjems J, Torring T, Gothelf K V. Nat. Chem., 2014, 6(9): 804.

[54]

Wollman A J, Sanchez-Cano C, Carstairs H M, Cross R A, Turberfield A J. Nat. Nanotechnol., 2014, 9(1): 44.

[55]

Sagredo S, Pirzer T, Rafat A A, Goetzfried M A, Moncalian G, Simmel F C, De La Cruz F. Angew. Chem. Int. Ed., 2016, 55(13): 4348.

[56]

Xiong X, Liu H, Zhao Z, Altman M B, Lopez-Colon D, Yang C J, Chang L J, Liu C, Tan W. Angew. Chem. Int. Ed. Engl., 2013, 52(5): 1472.

[57]

Vinkenborg J L, Mayer G, Famulok M. Angew. Chem. Int. Ed., 2012, 51(36): 9176.

[58]

Lovrinovic M., Seidel R., Wacker R., Schroeder H., Seitz O., Engelhard M., Goody R. S., Niemeyer C. M., Chem. Commun.(Camb), 2003, (7), 822

[59]

Duckworth B P, Chen Y, Wollack J W, Sham Y, Mueller J D, Taton T A, Distefano M D. Angew. Chem. Int. Ed., 2007, 46(46): 8819.

[60]

Valero J, Pal N, Dhakal S, Walter N G, Famulok M. Nat. Nanotechnol., 2018, 13(6): 496.

[61]

Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson G J, Han J Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y. Nat. Biotechnol., 2018, 36(3): 258.

[62]

Nielsen T B, Thomsen R P, Mortensen M R, Kjems J, Nielsen P F, Nielsen T E, Kodal A L B, Clo E, Gothelf K V. Angew. Chem. Int. Ed., 2019, 58(27): 9068.

[63]

Jiang T, Meyer T A, Modlin C, Zuo X, Conticello V P, Ke Y. J. Am. Chem. Soc., 2017, 139(40): 14025.

[64]

Lacroix A, Edwardson T G W, Hancock M A, Dore M D, Sleiman H F. J. Am. Chem. Soc., 2017, 139(21): 7355.

[65]

Dong Y, Chen S, Zhang S, Sodroski J, Yang Z, Liu D, Mao Y. Angew. Chem. Int. Ed., 2018, 57(8): 2072.

[66]

Hernandez-Garcia A, Estrich N A, Werten M W, Van Der Maarel J R, Labean T H, De Wolf F A, Cohen Stuart M A, De Vries R. ACS Nano, 2017, 11(1): 144.

[67]

Thompson R E, Stevens A J, Muir T W. Nat. Chem., 2019, 11(8): 737.

[68]

Zhang C, Tian C, Guo F, Liu Z, Jiang W, Mao C. Angew. Chem. Int. Ed., 2012, 51(14): 3382.

[69]

Udomprasert A, Bongiovanni M N, Sha R, Sherman W B, Wang T, Arora P S, Canary J W, Gras S L, Seeman N C. Nat. Nanotechnol., 2014, 9(7): 537.

[70]

Mao X H, Li K, Liu M M, Wang X Y, Zhao T X, An B L, Cui M K, Li Y F, Pu J H, Li J, Wang L H, Lu T K, Fan C H, Zhong C. Nat. Commun., 2019, 10: 1395.

[71]

Zhou K, Ke Y, Wang Q. J. Am. Chem. Soc., 2018, 140(26): 8074.

[72]

Jin J, Baker E G, Wood C W, Bath J, Woolfson D N, Turberfield A J. ACS Nano, 2019, 13: 9927.

[73]

Praetorius F, Dietz H. Science, 2017, 355(6331): eaa5488.

[74]

Raz M H, Hidaka K, Sturla S J, Sugiyama H, Endo M. J. Am. Chem. Soc., 2016, 138(42): 13842.

[75]

Funke J J, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H. Sci. Adv., 2016, 2(11): e1600974.

[76]

Ke Y, Meyer T, Shih W M, Bellot G. Nat. Commun., 2016, 7: 10935.

[77]

Grossi G, Jepsen M D E, Kjems J, Andersen E S. Nat. Commun., 2017, 8(1): 992.

[78]

Auvinen H, Zhang H, Nonappa, Kopilow A, Niemela E H, Nummelin S, Correia A, Santos H A, Linko V, Kostiainen M A. Adv. Healthc. Mater., 2017, 6(18): 1700692.

[79]

Schaffert D H, Okholm A H, Sorensen R S, Nielsen J S, Torring T, Rosen C B, Kodal A L, Mortensen M R, Gothelf K V, Kjems J. Small, 2016, 12(19): 2634.

[80]

Mao J Y, Li H W, Wei S C, Harroun S G, Lee M Y, Lin H Y, Chung C Y, Hsu C H, Chen Y R, Lin H J, Huang C C. ACS Appl. Mater. Interfaces, 2017, 9(51): 44307.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/