Uncommon Intramolecular Charge Transfer Effect and Its Potential Application in OLED Emitters

Haozhong Wu , Juanjuan Luo , Zeng Xu , Zhiming Wang , Dongge Ma , Anjun Qin , Ben Zhong Tang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 61 -67.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 61 -67. DOI: 10.1007/s40242-019-0032-3
Article

Uncommon Intramolecular Charge Transfer Effect and Its Potential Application in OLED Emitters

Author information +
History +
PDF

Abstract

Planarized intramolecular charge transfer(PLICT) state can facilitate the fluorescence process thanks to the relative excellent planarity. Recently, we have discovered that the excited state quinone-conformation induced planarization(ESQIP) occurring on tetraphenylpyrazine(TPP) based derivatives could furnish them with PLICT feature. Unlike to the well-known intramolecular charge transfer, strengthening the electron-donating nature on the donor(D) moiety did not impair the PLICT. The calculation results showed that planarization of the TPP based compounds scarcely accompanied with energy wastage while amount of energy was required for the torsion on geometries. In the polar solvents, the energy consumption for planarization could further decrease, but that for twisting structure would increase. To take advantage of the transformation of the frontier orbitals’ distribution, the PLICT type materials would perform a potential application on organic light-emitting diodes(OLEDs).

Keywords

Planarized intramolecular charge transfer / Tetraphenylpyrazine / Excited state quinone-conformation induced planarization / Organic light-emitting diode

Cite this article

Download citation ▾
Haozhong Wu, Juanjuan Luo, Zeng Xu, Zhiming Wang, Dongge Ma, Anjun Qin, Ben Zhong Tang. Uncommon Intramolecular Charge Transfer Effect and Its Potential Application in OLED Emitters. Chemical Research in Chinese Universities, 2020, 36(1): 61-67 DOI:10.1007/s40242-019-0032-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gather M C, Köhnen A, Meerholz K. Adv. Mater., 2011, 23: 233.

[2]

Hashimoto M, Igawa S, Yashima M, Kawata I, Hoshino M, Osawa M. J. Am. Chem. Soc., 2011, 133: 10348.

[3]

Tao Y, Yang C, Qin J. Chem. Soc. Rev., 2011, 40: 2943.

[4]

Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234.

[5]

Vasilopoulou M, Georgiadou D, Pistolis G, Argitis P. Adv. Funct. Mater., 2007, 17: 3477.

[6]

Wang Z B, Helander M G, Qiu J, Puzzo D P, Greiner M T, Hudson Z M, Wang S, Liu Z W, Lu Z H. Nat. Photonics, 2011, 5: 753.

[7]

Niklas J, Poluektov O G. Adv. Energy Mater., 2017, 7: 1602226.

[8]

Savikhin V, Babics M, Neophytou M, Liu S, Oosterhout S D, Yan H, Gu X, Beaujuge P M, Toney M F. Chem. Mater., 2018, 30: 7872.

[9]

Zhang S, Ye L, Hou J. Adv. Energy Mater., 2016, 6: 1502529.

[10]

Camposeo A, Del C P, Persano L, Pisignano D. Adv. Mater., 2012, 24: 221.

[11]

Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa S I, Takahashi H, Nakano M. Angew. Chem. Int. Ed., 2007, 46: 3544.

[12]

Cho S, Lim J M, Hiroto S, Kim P, Shinokubo H, Osuka A, Kim D. J. Am. Chem. Soc., 2009, 131: 6412.

[13]

Zhao Y S, Wu J, Huang J. J. Am. Chem. Soc., 2009, 131: 3158.

[14]

Zheng J Y, Yan Y, Wang X, Shi W, Ma H, Zhao Y S, Yao J. Adv. Mater., 2012, 24: 194.

[15]

Hu R, Zhou F, Zhou T, Shen J, Wang Z, Zhao Z, Qin A, Tang B Z. Biomaterials, 2018, 187: 47.

[16]

Liu B, Bazan G C. Chem. Mater., 2004, 16: 4467.

[17]

Grabowski Z R, Rotkiewicz K, Rettig W. Chem. Rev., 2003, 103: 3899.

[18]

Sasaki S, Drummen G P C, Konishi G I. J. Mater. Chem. C, 2016, 4: 2731.

[19]

Mei J, Hong Y, Lam J W Y, Qin A, Tang Y, Tang B Z. Adv. Mater., 2014, 26: 5429.

[20]

Kucherak O A, Didier P, Mély Y, Klymchenko A S. J. Phys. Chem. Lett., 2010, 1: 616.

[21]

Moss K C, Bourdakos K N, Bhalla V, Kamtekar K T, Bryce M R, Fox M A, Vaughan H L, Dias F B, Monkman A P. J. Org. Chem., 2010, 75: 6771.

[22]

Sasaki S, Niko Y, Klymchenko A S, Konishi G I. Tetrahedron, 2014, 70: 7551.

[23]

Ye J, Chen Z, Fung M K, Zheng C, Ou X, Zhang X, Yuan Y, Lee C S. Chem. Mater., 2013, 25: 2630.

[24]

Zhang Z, Edkins R M, Nitsch J, Fucke K, Eichhorn A, Steffen A, Wang Y, Marder T B. Chem. Eur. J., 2015, 21: 177.

[25]

Haberhauer G, Gleiter R, Burkhart C. Chem. Eur. J., 2016, 22: 971.

[26]

Haberhauer G. Chem. Eur. J., 2017, 23: 9288.

[27]

Wu H, Pan Y, Zeng J, Du L, Luo W, Zhang H, Xue K, Chen P, Phillips D L, Wang Z, Qin A, Tang B Z. Adv. Opt. Mater., 2019, 7: 1900283.

[28]

Chen M, Nie H, Song B, Li L, Sun J Z, Qin A, Tang B Z. J. Mater. Chem. C, 2016, 4: 2901.

[29]

Pan L, Wu H, Liu J, Xue K, Luo W, Chen P, Wang Z, Qin A, Tang B Z. Adv. Opt. Mater., 2019, 7: 1801673.

[30]

Wu H, Zeng J, Xu Z, Zhang B, Zhang H, Pan Y, Wang Z, Ma D, Qin A, Tang B Z. J. Mater. Chem. C, 2019, 7: 13047.

[31]

Chaskar A, Chen H F, Wong K T. Adv. Mater., 2011, 23: 3876.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/