Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection

Tao Li , Ruilin Duan , Zhijuan Duan , Fujian Huang , Fan Xia

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 194 -202.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 194 -202. DOI: 10.1007/s40242-019-0031-4
Review

Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection

Author information +
History +
PDF

Abstract

In this review, the most recent progresses in the field of fluorescence signal amplification strategies based on DNA nanotechnology for miRNA are summarized. The types of signal amplification are given and the principles of amplification strategies are explained, including rolling circle amplification(RCA), catalytic hairpin assembly (CHA), hybridization chain reaction(HCR) and DNA walker. Subsequently, the application of these signal amplification methods in biosensing and bioimaging are covered and described. Finally, the challenges and the outlook of fluorescence signal amplification methods for miRNA detection are briefly commented.

Keywords

Signal amplification / DNA nanotechnology / Fluorescence / miRNA detection / Biosensing and bioimaging

Cite this article

Download citation ▾
Tao Li, Ruilin Duan, Zhijuan Duan, Fujian Huang, Fan Xia. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection. Chemical Research in Chinese Universities, 2020, 36(2): 194-202 DOI:10.1007/s40242-019-0031-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao Y X, Chen F, Li Q, Wang L H, Fan C H. Chem. Rev., 2015, 115: 12491.

[2]

Newman A M, Bratman S V, To J, Wynne J F, Eclov N C W, Modlin L A, Liu C L, Neal J W, Wakelee H A, Merritt R E, Shrager J B, Loo W L Jr., Alizadeh A A, Diehn M. Nat. Med., 2014, 20: 548.

[3]

Dai Y, Huang S, Tang M, Lv T Y, Hu C X, Tan Y H, Xu Z M, Yin Y B. Lupus, 2007, 16: 936.

[4]

Thum T, Condorelli G. Circ. Res., 2015, 116: 751.

[5]

Rodriguez M M, Linnes J C, Fan A, Ellenson C K, Pollock N R, Klapperich C M. Anal. Chem., 2015, 87: 7872.

[6]

Sullenger B A, Gilboa E. Nature, 2002, 418: 252.

[7]

Shi C, Shen X T, Niu S Y, Ma C P. J. Am. Chem. Soc., 2015, 137: 13804.

[8]

Friedman R C, Farh K K H, Burge C B, Bartel D P. Genome Res., 2009, 19: 92.

[9]

Yeung M L, Bennasser Y, Jeang K T. Curr. Med. Chem., 2007, 14: 191.

[10]

Sawyers C L. Nature, 2008, 452: 548.

[11]

Iorio M V, Croce C M. Mol. Med., 2012, 4: 143.

[12]

Liu C Y, Wen J, Meng Y B, Zhang K L, Zhu J L, Ren Y, Qian X M, Yuan X B, Lu Y F, Kang C S. Adv. Mater., 2015, 27: 292.

[13]

Huang F J, Xia F. Sci. Bull., 2017, 62: 312.

[14]

Silahtaroglu A N, Nolting D, Dyrskjøt L, Berezikov E, Møller M, Tommerup N, Kauppinen S. Nat. Protoc., 2007, 2: 2520.

[15]

Jin Z W, Geißler D, Qiu X, Wegner KD, Hildebrandt N. Angew. Chem. Int. Ed., 2015, 54: 10024.

[16]

Causa F, Aliberti A, Cusano A M, Battista E, Netti P A. J. Am. Chem. Soc., 2015, 137: 1758.

[17]

Oishi M, Sugiyama S. Small, 2016, 12: 5153.

[18]

Dong J, Chen G Y, Wang W, Huang X, Peng H P, Pu Q L, Du F, Cui X, Deng Y, Tang Z. Anal. Chem., 2018, 90: 7107.

[19]

Wu H, Liu Y L, Wang H Y, Wu J, Zhu F F, Zou P. Biosens. Bioelectron., 2016, 81: 303.

[20]

Yu Y Y, Chen Z G, Shi L J, Yang F, Pan J B, Zhang B B, Sun D P. Anal. Chem., 2014, 86: 8200.

[21]

Koo K M, Carrascosa L G, Shiddiky M J A, Trau M. Anal. Chem., 2016, 88: 2000.

[22]

Huang F J, Lin M H, Duan R L, Lou X D, Xia F, Willner I. Nano Lett., 2018, 18: 5116.

[23]

Miao P, Zhang T, Xu J H, Tang Y G. Anal. Chem., 2018, 90: 11154.

[24]

Bi S, Zhang J L, Hao S Y, Ding C F, Zhang S S. Anal. Chem., 2011, 83: 3696.

[25]

Wang Q, Yin B C, Ye B C. Biosens. Bioelectron, 2016, 80: 366.

[26]

Pavlov V, Xiao Y, Gill R, Dishon A, Kotler M, Willner I. Anal. Chem., 2004, 76: 2152.

[27]

Šípová H, Zhang S L, Dudley A M, Galas D, Wang K, Homola J. Anal. Chem., 2010, 82: 10110.

[28]

Liu R J, Wang Q, Li Q, Yang X H, Wang K, Nie W Y. Biosens. Bioelectron., 2017, 87: 433.

[29]

Wang Q, Li Q, Yang X H, Wang K M, Du S S, Zhang H, Nie Y J. Biosens. Bioelectron., 2016, 77: 1001.

[30]

Zhao H Y, Wang L, Zhu J, Wei H P, Jiang W. Talanta, 2015, 138: 163.

[31]

Yin B C, Liu Y Q, Ye B C. J. Am. Chem. Soc., 2012, 134: 5064.

[32]

Qiu X, Hildebrandt N. ACS Nano, 2015, 9: 8449.

[33]

Degliangeli F, Kshirsagar P, Brunetti V, Pompa P P, Fiammengo R. J. Am. Chem. Soc., 2014, 136: 2264.

[34]

Dong H F, Jin S, Ju H X, Hao K H, Xu L P, Lu H T, Zhang X J. Anal. Chem., 2012, 84: 8670.

[35]

Yang L, Liu C H, Ren W, Li Z P. ACS Appl. Mater. Interfaces., 2012, 4: 6450.

[36]

Ou X W, Zhan S S, Sun C L, Cheng Y, Wang X D, Liu B F, Zhai T Y, Lou X D, Xia F. Biosens. Bioelectron., 2019, 124: 199.

[37]

Min X H, Zhang M S, Huang F J, Lou X D, Xia F. ACS Appl. Mater. Interfaces., 2016, 8: 8998.

[38]

Min X H, Zhuang Y, Zhang Z Y, Jia Y M, Hakeem A, Zheng F X, Cheng Y, Tang B Z, Lou X D, Xia F. ACS Appl. Mater. Interfaces., 2015, 7: 16813.

[39]

Min X H, Xia L, Zhuang Y, Wang X D, Du J, Zhang X J, Lou X D, Xia F. Sci. Bull., 2017, 62: 997.

[40]

Wang L D, Deng R J, Li J H. Chem. Sci., 2015, 6: 6777.

[41]

Thomson J M, Parker J, Perou C M, Hammond S M. Nat. Methods., 2004, 1: 47.

[42]

Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Nucleic Acids Res., 2004, 32: e175.

[43]

Gasic E V, Wu R M, Wood M, Walton E F, Hellens R P. Plant Methods, 2007, 3: 12.

[44]

Chen C F, Ridzon D A, Broomer A J, Zhou Z H, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K L, Guegler K J. Nucleic Acids Res., 2005, 33: e179.

[45]

Liu N N, Huang F J, Lou X D, Xia F. Sci. China Chem., 2017, 60: 311.

[46]

Song S P, Liang Z Q, Zhang J, Wang L H, Li G X, Fan C H. Angew. Chem. Int. Ed., 2009, 48: 8670.

[47]

Ge Z L, Lin M H, Wang P, Pei H, Yan J, Shi J Y, Huang Q, He D N, Fan CH, Zuo X L. Anal. Chem., 2014, 86: 2124.

[48]

Yin B C, Liu Y Q, Ye B C. J. Am. Chem. Soc., 2012, 134: 5064.

[49]

Shi C, Liu Q, Ma C P, Zhong W W. Anal. Chem., 2014, 86: 336.

[50]

Jiang Y, Li B L, Milligan J N, Bhadra S, Ellington A D. J. Am. Chem. Soc., 2013, 135: 7430.

[51]

Xu Z Q, Liao L L, Chai Y Q, Wang H J, Yuan R. Anal. Chem., 2017, 89: 8282.

[52]

Lizardi P M, Huang X H, Zhu Z R, Ward P B, Thomas D C, Ward D C. Nat. Genet., 1998, 19: 225.

[53]

Schweitzer B, Roberts S, Grimwade B, Shao W P, Wang M M, Fu Q, Shu Q P, Laroche L, Zhou Z M, Tchernev V T, Christiansen J, Velleca M, Kingsmore S F. Nat. Biotechnol., 2002, 20: 359.

[54]

Schweitzer B, Wiltshire S, Lambert J, O’Malley S, Kukanskis K, Zhu Z R, Kingsmore S F, Lizardi P M, Ward D C. PNAS, 2000, 97: 10113.

[55]

Bi S, Zhang Z P, Zhu J J. Chem. Sci., 2013, 4: 1858.

[56]

Zhao Y X, Qi L, Chen F, Dong Y H, Kong Y, Wu Y Y, Fan C H. Chem. Commun., 2012, 48: 3354.

[57]

Yin P, Choi H M T, Calvert C R, Pierce N A. Nature, 2008, 451: 318.

[58]

Zheng A X, Wang J R, Li J, Song X R, Chen G R, Yang H H. Biosens. Bioelectron., 2012, 36: 217.

[59]

Hou T, Wang X Z, Liu X J, Lu T T, Liu S F, Li F. Anal. Chem., 2014, 86: 884.

[60]

Dirks R M, Pierce N A. Proc. Natl. Acad. Sci. USA, 2004, 101: 15275.

[61]

Huang R C, Chiu W J, Li Y J, Huang C C. ACS Appl. Mater. Interfaces, 2014, 6: 21780.

[62]

Sherman W B, Seeman N C. Nano Lett., 2004, 4: 1203.

[63]

Shin J S, Pierce N A. J. Am. Chem. Soc., 2004, 126: 10834.

[64]

Jung C, Allen P B, Ellington A D. ACS Nano, 2017, 11: 8047.

[65]

Bath J, Green S J, Turberfield A J. Angew. Chem. Int. Ed., 2005, 44: 4358.

[66]

Tian Y, He Y, Chen Y, Yin P, Mao C. Angew. Chem. Int. Ed., 2005, 117: 4429.

[67]

O’Donovan P, Perrett C M, Zhang X H, Montaner B, Xu Y Z, Harwood C A, McGregor J M, Walker S L, Hanaoka F, Karran P. Science, 2005, 309: 1871.

[68]

You M X, Chen Y, Zhang X B, Liu H P, Wang R W, Wang K L, Williams K R, Tan W H. Angew. Chem. Int. Ed., 2012, 124: 2507.

[69]

Wang L D, Deng R J, Li J H. Chem. Sci., 2015, 6: 6777.

[70]

Cai S X, Chen M, Liu M M, He W H, Liu Z J, Wu D Z, Xia Y K, Yang H H, Chen J H. Biosens. Bioelectron., 2016, 85: 184.

[71]

Shlyahovsky B, Li Y, Lioubashevski O, Elbaz J, Willner I. ACS Nano, 2009, 3: 1831.

[72]

He Y, Liu D R. Nature Nanotech., 2010, 5: 778.

[73]

Shin J S, Pierce N A. J. Am. Chem. Soc., 2004, 126: 10834.

[74]

Thubagere A J, Li W, Johnson R F, Chen Z, Doroudi S, Lee Y L, Izatt G, Wittman S, Srinivas N, Woods D, Winfree E, Qian L. Science, 2017, 357: eaan6558.

[75]

Ge J, Zhang L L, Liu S J, Yu R Q, Chu X. Anal. Chem., 2014, 86: 1808.

[76]

Deng R J, Tang L H, Tian Q Q, Wang Y, Lin L, Li J H. Angew. Chem. Int. Ed., 2014, 53: 2389.

[77]

Zhang Z, Wang Y Y, Zhang N B, Zhang S S. Chem. Sci., 2016, 7: 4184.

[78]

Tian W M, Li P J, He W L, Liu C H, Li Z P. Biosens. Bioelectron., 2019, 128: 17.

[79]

Wei Q M, Huang J, Li J, Wang J L, Yang X H, Liu JB, Wang K M. Chem. Sci., 2018, 9: 7802.

[80]

Yue S Z, Song X Y, Song W L, Bi S. Chem. Sci., 2019, 10: 1651.

[81]

Li D X, Wu Y L, Gan C F, Yuan R, Xiang Y. Nanoscale, 2018, 10: 17623.

[82]

Liu H Y, Tian T, Zhang Y H, Ding L H, Yu J H, Yan M. Biosens. Bioelectron., 2017, 89: 710.

[83]

Zhang Y, Chen Z W, Tao Y, Wang Z Z, Ren J S, Qu X G. Chem. Commun., 2015, 51: 11496.

[84]

Li L, Feng J, Liu H Y, Li Q L, Tong L L, Tang B. Chem. Sci., 2016, 7: 1940.

[85]

Li S Y, Zhang F, Chen X M, Cai C Q. Sensor Actuat B: Chem., 2018, 263: 87.

[86]

Qu X M, Xiao M S, Li F, Lai W, Li L, Zhou Y, Lin C L, Li Q, Ge ZL, Wen Y L, Pei H, Liu G. ACS Appl. Bio. Mater., 2018, 1: 859.

[87]

Liang C P, Ma C Q, Liu H, Guo X G, Yin B C, Ye B C. Angew. Chem. Int. Ed., 2017, 56: 9077.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/