Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination

Congli Wang , Zhenghan Di , Zetan Fan , Lele Li

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 268 -273.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 268 -273. DOI: 10.1007/s40242-019-0028-z
Article

Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination

Author information +
History +
PDF

Abstract

Despite a growing interest in DNA nanomaterials, their simple synthesis remains a challenge. A simple and general strategy for constructing DNA-based nanomaterials by metal ion coordination is reported. The metal-DNA nanoparticles(NPs) could be synthesized with DNA molecules of diverse sequence and various metal ions of intrinsic property, resulting in multifunctional NPs with the combined advantages of both inorganic and DNA building blocks. It is demonstrated that the hybrid metal-DNA NPs could be engineered for magnetic resonance and luminescence imaging, encapsulation of multifarious nucleic acids with controlled ratio, and co-assembly with small drug molecules. Furthermore, because these metal-DNA NPs exhibited enhanced cellular uptake compared to free synthetic DNA, they hold potential for applications in diagnostics and therapeutics.

Keywords

DNA nanotechnology / Metal ion coordination / Self-assembly

Cite this article

Download citation ▾
Congli Wang, Zhenghan Di, Zetan Fan, Lele Li. Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination. Chemical Research in Chinese Universities, 2020, 36(2): 268-273 DOI:10.1007/s40242-019-0028-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seeman N C. Nature, 2003, 421: 427.

[2]

Park S Y, Lytton-Jean A K, Lee B, Weigand S, Schatz G C, Mirkin C A. Nature, 2008, 451: 553.

[3]

Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E, Högele A, Simmel F C, Govorov A O, Liedl T. Nature, 2012, 483: 311.

[4]

Tan W, Donovan M J, Jiang J. Chem. Rev., 2013, 113: 2842.

[5]

Teller C, Willner I. Curr. Opin. Biotechnol., 2010, 21(4): 376.

[6]

Liu J, Cao Z, Lu Y. Chem. Rev., 2009, 109: 1948.

[7]

Rosi N L, Giljohann D A, Thaxton C S, Lytton-Jean A K R, Han M S, Mirkin C A. Science, 2006, 312(5776): 1027.

[8]

Douglas S M, Bachelet I, Church G M. Science, 2012, 335(6070): 831.

[9]

Lee J H, Yigit M V, Mazumdar D, Lu Y. Adv. Drug Deliv. Rev., 2010, 62(6): 592.

[10]

Seeman N C. J. Theor. Biol., 1982, 99(2): 237.

[11]

Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382: 607.

[12]

Jones M R, Seeman N C, Mirkin C A. Science, 2015, 347(6224): 1260901.

[13]

Rogers W B, Shih W M, Manoharan V N. Nat. Rev. Mat., 2016, 1: 16008.

[14]

Rothemund P W. Nature, 2006, 440: 297.

[15]

Cutler J I, Auyeung E, Mirkin C A. J. Am. Chem. Soc., 2012, 134(3): 1376.

[16]

Simmel S S, Nickels P C, Liedl T. Acc. Chem. Res., 2014, 47(6): 1691.

[17]

Pinheiro A V, Han D, Shih W M, Yan H. Nat. Nanotechnol., 2011, 6: 763.

[18]

Yang H, McLaughlin C K, Aldaye R A, Hamblin G D, Rys A Z, Rouiller I, Sleiman H R. Nat. Chem., 2009, 1: 390.

[19]

Aldaye F A, Palmer A L, Sleiman H F. Science, 2008, 321(5897): 1795.

[20]

Avakyan N, Greschner A A, Aldaye F, Serpell C J, Toader V, Petitjean A, Sleiman H F. Nat. Chem., 2016, 8: 368.

[21]

Northrop B H, Zheng Y R, Chi K W, Stang P J. Acc. Chem. Res., 2009, 42(10): 1554.

[22]

Cook T R, Zheng Y R, Stang P J. Chem. Rev., 2013, 113: 734.

[23]

Fujita M, Tominaga M, Hori A, Therrien B. Acc. Chem. Res., 2005, 38(4): 369.

[24]

Holten-Andersen N, Harrington M J, Birkedal H, Lee B P, Messersmith P B, Lee K Y C, Waite J H. Proc. Natl. Acad. Sci. USA, 2011, 108(7): 2651.

[25]

Burnworth M, Tang L, Kumpfer J R, Duncan A J, Beyer F L, Fiore G L, Rowan S J, Weder C. Nature, 2011, 472: 334.

[26]

Zhukhovitskiy A V, Zhong M, Keeler E G, Michaelis V K, Sun J E P, Hore M J A, Pochan D J, Griffin R G, Willard A P, Johnson J A. Nat. Chem., 2016, 8: 33.

[27]

Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

[28]

Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112: 673.

[29]

Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5415.

[30]

Oh M, Mirkin C A. Nature, 2005, 438: 651.

[31]

Spokoyny A M, Kim D, Sumrein A, Mirkin C A. Chem. Soc. Rev., 2009, 38: 1218.

[32]

Ejima H, Richardson J J, Liang K, Best J P, van Koeverden M P, Such G K, Cui J, Caruso F. Science, 2013, 341(6142): 154.

[33]

Li M, Wang C, Di Z, Li H, Zhang J, Xue W, Zhao M, Zhang K, Zhao Y, Li L. Angew. Chem. Int. Ed., 2019, 58: 1350.

[34]

Liu B, Hu F, Zhang J, Wang C, Li L. Angew. Chem. Int. Ed., 2019, 58: 8804.

[35]

Liu B, Zhang J, Li L. Chem.-Eur. J., 2019, 25: 13452.

[36]

Liu F, He X, Chen H, Zhang J, Zhang H, Wang Z. Nat. Commun., 2015, 6: 8003.

[37]

Yeo S J, Yoon J G, Hong S C, Yi A K. J Immunol., 2003, 170: 1052.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/