Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity

Jinmiao Tian , Sikai Chen , Xiang Wang , Juan Li

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 151 -156.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 151 -156. DOI: 10.1007/s40242-019-0024-3
Review

Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity

Author information +
History +
PDF

Abstract

Artificial base pairs, from the perspective of synthetic biology, are designed to contain the features of modularity, orthogonality, and manipulability. And the development of artificial base pairs has been endowed with responsibility to understand the biological process, improve the recognition capacity and stability of aptamers, and develop the nucleoside drugs, diagnosis, and drug delivery. In this review, we first gave a concise introduction of artificial base pairs based on their interaction modes including alternative hydrogen bonding, hydrophobic interaction, and metal coordination. Then we displayed the detailed information of artificial base pairs with hydrogen bonding interaction, and analyzed how the changes of their structures affect their functions. Subsequently, we highlighted the applications of functional artificial base pairs in aptamer discovery, diagnosis, and drug delivery. Finally, an insight into the remaining challenges and future perspective of the artificial bases was provided.

Keywords

Artificial base pair / Nucleic acid / Hydrogen bonding base pair / Hydrophobic base pair / Metal-base pair / Aptamer

Cite this article

Download citation ▾
Jinmiao Tian, Sikai Chen, Xiang Wang, Juan Li. Evolution of Artificial Base Pairs with Hydrogen Bond Complementarity. Chemical Research in Chinese Universities, 2020, 36(2): 151-156 DOI:10.1007/s40242-019-0024-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Switzer C Y, Moroney S E, Benner S A. J. Am. Chem. Soc., 1989, 111: 8322.

[2]

Wan W B, Seth P P. J. Med. Chem., 2016, 59: 9645.

[3]

Smith C L E, Zain R. Annu. Rev. Pharmacol. Toxicol., 2019, 59: 605.

[4]

Benner S A. Acc. Chem. Res., 2004, 37: 784.

[5]

Dien V T, Holcomb M, Romesberg F E. Biochemistry, 2019, 58: 2581.

[6]

Feldman A W, Romesberg F E. Acc. Chem. Res., 2018, 51: 784.

[7]

Takezawa Y, Shionoya M. Acc. Chem. Res., 2012, 45: 2066.

[8]

Muller J. Coordin. Chem. Rev., 2019, 393: 37.

[9]

Hutter D, Benner S A. J. Org. Chem., 2003, 68: 9839.

[10]

Yang Z, Sismour A M, Sheng P, Puskar N L, Benner S A. Nucleic Acids Res., 2007, 35: 4238.

[11]

Sismour A M, Lutz S, Park J, Lutz M J, Boyer P L, Hughes H, Benner S A. Nucleic Acids Res., 2004, 32: 728.

[12]

Yang Z, Chen F, Alvarado J B, Benner S A. J. Am. Chem. Soc., 2011, 133: 15105.

[13]

Leal N A, Kim H J, Hoshika S, Kim M J, Carrigan M A, Benner S A. ACS Synth. Biol., 2015, 44: 407.

[14]

Bain J D, Switzer C, Chamberlin R, Benner S A. Nature, 1992, 356: 537.

[15]

Kim H J, Leal N A, Benner S A. Bioorg. Med. Chem., 2009, 17: 3728.

[16]

Hoshika S, Leal N A, Kim M J, Kim M S, Karalkar N B, Kim H J, Bates A M, Watkins N E Jr., Santalucia H A, Meyer A J, Dasgupta S, Piccirilli J A, Ellington A D, Santalucia J Jr., Georgiadis M M, Benner S A. Science, 2019, 363: 884.

[17]

Morales J C, Kool E T. Nat. Struct. Biol., 1998, 5: 950.

[18]

Hirao I, Kimoto M, Mitsui T, Fujiwara T, Kawai R, Sato A, Harada Y, Yokoyama S. Nat. Methods, 2006, 3: 729.

[19]

Kimoto M, Matsunaga K I, Hirao I. Current Protocols in Chemical Biology, 2017, 9: 315.

[20]

Leconte A M, Romesberg F E. Nat. Methods, 2006, 3: 667.

[21]

Li L, Degardin M, Lavergne T, Malyshev D A, Dhami K, Ordoukhanian P, Romesberg F E. J. Am. Chem. Soc., 2014, 136: 826.

[22]

Malyshev D A, Dhami K, Lavergne T, Chen T, Dai N, Forster J M, Correa I R, Romesberg F E. Nature, 2014, 509: 385.

[23]

Thyer R, Ellefson J. Nature, 2014, 509: 291.

[24]

Katz S. Biochim. Biophys. Acta, 1963, 68: 240.

[25]

Swasey Steven M, Gwinn Elisabeth G. Silver-mediated base pairings: towards dynamic DNA nanostructures with enhanced chemical and thermal stability. New Journal of Physics, 2016, 18(4): 045008.

[26]

Yang Z, Hutter D, Sheng P, Sismour A M, Benner S A. Nucleic Acids Res., 2006, 34: 6095.

[27]

Sheng P., Yang Z., Kim Y., Wu Y., Tan W., Benner S. A., Chem. Commun., 2008, 5128

[28]

Sefah K, Yang Z, Bradley K M, Hoshika S, Jiméneza E, Zhang L, Zhu G, Shanker S, Yue F, Turek D, Tan W, Benner S A. Proc. Natl. Acad. Sci. USA, 2014, 111: 1449.

[29]

Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng I T, Shi M, Wu Y, Dong Y, Tan W. ACS Nano, 2017, 11: 3943.

[30]

Tan J, Zhao M, Wang J, Li Z, Liang L, Zhang L, Yuan Q, Tan W. Angew. Chem. Int. Ed., 2019, 58: 1621.

[31]

Wang L, Liang H, Sun J, Liu Y, Li J, Li J, Yang H. J. Am. Chem. Soc., 2019, 141: 12673.

[32]

Chen S, Xu Z, Yang W, Lin X, Li J, Li J, Yang H. Angew. Chem. Int. Ed., 2019, 58: 18186.

[33]

Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing F L, Tan W. J. Am. Chem. Soc., 2014, 136: 2731.

[34]

Jin C, Zhang H, Zou J, Liu Y, Zhang L, Li F, Wang R, Xuan W, Ye M, Tan W. Angew. Chem. Int. Ed., 2018, 57: 8994.

[35]

Wang R, Jin C, Zhu X, Zhou L, Xuan W, Liu Y, Liu Q, Tan W. J. Am. Chem. Soc., 2017, 139: 9104.

[36]

Abdullah R, Xie S, Wang R, Jin C, Du Y, Fu T, Li J, Tan J, Zhang L, Tan W. Anal. Chem., 2019, 91: 2074.

[37]

Zhang L, Abdullah R, Hu X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Sun Y, Zhang X, Tan W. J. Am. Chem. Soc., 2019, 141: 4282.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/