Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process

Yueshan Yu , Dahui Wang , Huaijing Chen , Xiaodong Zhang , Li Xu , Lixin Yang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 908 -914.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 908 -914. DOI: 10.1007/s40242-019-0010-9
Article

Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process

Author information +
History +
PDF

Abstract

Different from the traditional pyrometallurgical recovery process of Li and Co from spent lithium-ion batteries, a new recovery method for Li and Co was established by converting LiCoO2 into water-soluble metal sulfates by roasting a mixture of LiCoO2 and NaHSO4·H2O. The evolution law of the mixture with increased roasting temperature was investigated by thermogravimetry-differential scanning calorimetry(TG-DSC), in situ X-ray diffraction(XRD), XRD, and X-ray photoelectron spectroscopy(XPS). The results show that the phase transition of LiCoO2 mixed with NaHSO4·H2O with increased temperature proceeded as follows: LiCoO2, NaHSO4H2O→LiCoO2, NaHSO4→Li1−xCoO2, LiNaSO4, Na2S2O7, Na2SO4→Li1−xCoO2, Co3O4, LiNaSO4, Na2SO4→Co3O4, LiNaSO4. The reaction mechanism of this roasting process may be as follows: LiCoO2+NaHSO4·H2O→1/2Li2SO4+ 1/2Na2SO4+1/3Co3O4+1/12O2+3/2H2O, Li2SO4+Na2SO4=2LiNaSO4.

Keywords

LiCoO2 / Chemical evolution / Roasting / In situ XRD

Cite this article

Download citation ▾
Yueshan Yu, Dahui Wang, Huaijing Chen, Xiaodong Zhang, Li Xu, Lixin Yang. Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process. Chemical Research in Chinese Universities, 2020, 36(5): 908-914 DOI:10.1007/s40242-019-0010-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang X, Shi N N, Zhang Y, Cheng K, Ye K, Wang G L, Cao D X. Chem. J. Chinese Universities, 2015, 36(4): 739.

[2]

Feng J J, Xu R Q, Tang Z Y, Ai H Q. Chem. J. Chinese Universities, 2007, 28(8): 1532.

[3]

Yang Y, Xu S M, He Y G. Waste Manag., 2017, 64: 219.

[4]

Wang Y H, Ma L W, Xi X L, Nie Z R, Zhang Y H, Wen X. Waste Manag., 2019, 95: 192.

[5]

Zheng R J, Wang W H, Dai Y K, Ma Q X, Liu Y L, Mu D Y, Li R H, Ren J, Dai C S. Green Energy & Environment, 2017, 2(1): 42.

[6]

Liu C W, Lin J, Cao H B, Zhang Y, Sun Z. J. Clean Prod., 2019, 228: 801.

[7]

Shi Y, Chen G, Chen Z. Green Chem., 2018, 20(4): 851.

[8]

Zhu S G, He W Z, Li G M, Zhou X, Zhang X J, Huang J W. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2274.

[9]

Guo Y, Li F, Zhu H C, Li G M, Huang J W, He W Z. Waste Manag., 2016, 51: 227.

[10]

Chen X P, Ma H R, Luo C B, Zhou T. J. Hazard Mater., 2017, 326: 77.

[11]

Lee C K, Rhee K I. Hydrometallurgy, 2003, 68(1–3): 5.

[12]

Li L, Ge J, Chen R J, Wu F, Chen S, Zhang X X. Waste Manag., 2010, 30(12): 2615.

[13]

Li L, Ge J, Wu F, Chen R J, Chen S, Wu B R. J. Hazard Mater., 2010, 176(1–3): 288.

[14]

Li L, Lu J, Ren Y, Zhang X X, Chen R J, Wu F, Amine K. J. Power Sources, 2012, 218: 21.

[15]

Li L, Dunn J B, Zhang X X, Gaines L, Chen R J, Wu F, Amine K. J. Power Sources, 2013, 233: 180.

[16]

Zeng X L, Li J H, Shen B Y. J. Hazard Mater., 2015, 295: 112.

[17]

Li D F, Wang C Y, Yin F, Chen Y Q, Yang Y Q, Jie X W. Non-ferrous Metals, 2009, 61(3): 83.

[18]

Liu P C, Xiao L, Tang Y W, Chen Y F, Ye L G, Zhu Y R. J. Theam. Anal. Calorim., 2018, 136(3): 1323.

[19]

Ren G X, Xiao S W, Xie M Q, Pan S, Fan Y Q, Wang F G, Xia X. J. Sustainable Metallurgy, 2017, 3(4): 703.

[20]

Zheng X H, Gao W F, Zhang X H, He M M, Lin X, Cao H B, Zhang Y, Sun Z. Waste Manag., 2016, 60: 680.

[21]

Mishra D, Kim D J, Ralph D E, Ahn J G, Rhee Y H. Waste Manag., 2008, 28(2): 333.

[22]

Horeh N B, Mousavi S M, Shojaosadati S A. J. Power Sources, 2016, 320: 257.

[23]

Wang D H, Wen H, Chen H J, Yang Y J, Liang H Y. Chem. Res. Chinese Universities, 2016, 32(4): 674.

[24]

Wang D H, Zhang X D, Chen H J, Sun J Y. Minerals Engineering, 2018, 126: 28.

[25]

Hayashi T, Okada J, Toda E, Kuzuo R, Matsuda Y, Kuwata N, Kawamura J. J. Power Sources, 2015, 285: 559.

[26]

Han S J, Xia Y G, Wei Z, Qiu B, Pan L C, Gu Q W, Liu Z Y, Guo Z Y. J. Mater. Chem. A, 2015, 3(22): 11930.

[27]

Lindberg B J, Hamrin L K, Johansson G, Gelius U, Fahlman A, Nordling C, Siegbahn K. Physica Scripta, 1970, 1(5/6): 286.

[28]

Zheng Y C, Li Z Q, Xu J, Wang T L, Liu X, Duan X H, Ma Y J, Zhou Y, Pei C H. Nano Energy, 2016, 20: 94.

[29]

Kosova N, Devyatkina E, Slobodyuk A, Kaichev V. Solid State Ionics, 2008, 179(27–32): 1745.

[30]

Miran H A, Rahman M M, Jiang Z T, Altarawneh M, Chuah L S, Lee H L, Mohammedpur E, Amri A, Mondinos N, Dlugogorski B Z. J. Alloy Compd., 2017, 701: 222.

[31]

Shatilo Y V, Makhonina E V, Pervov V S, Dubasova V S, Nikolenko A F, Dobrokhotova Z V, Kedrinskii I A. Inorg Mater., 2006, 42(7): 782.

[32]

Zhang Y Q, Li L, Shi S J, Xiong Q Q, Zhao X Y, Wang X L, Gu C D, Tu J P. J. Power Sources, 2014, 256: 200.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/