Two Pentavanadate-based Organic-inorganic Materials with Third-order NLO Properties

Yanzhao Yu , Jiapeng Cao , Yan Xu

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 1 -4.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 1 -4. DOI: 10.1007/s40242-018-8276-x
Article

Two Pentavanadate-based Organic-inorganic Materials with Third-order NLO Properties

Author information +
History +
PDF

Abstract

Two isolated organic-inorganic pentavanadate-based hybrids, ${\rm[H_2N(CH_3)_2]_{6.34}[V^V(\mu_3-O)_4V^{IV}_4O_5(SO_4)_4]\cdot(SO_4)_{0.67}\cdot(DMF)\cdot[HN(CH_3)_2]_{1.66}}$\end{document}(1) and [(HN)2(CH2)2(CH3)4][VV(μ 3-O)4V4 IVO5(SO4)4][H2N(CH3)2]3·(DMF)· [HN(CH3)2]0.5(2)(DMF=N,N-dimethylformamide) have been synthesized under solvothermal conditions and structu-rally characterized. In compound 1, three adjacent basic units form a triangle type cluster. The symmetric double-layer exists in compound 2. The study of the third-order nonlinear optical(NLO) properties for the two compounds demonstrates that the two-photon absorption(TPA) cross-section σ values of compounds 1 and 2 are 1372 and 1228 GM, respectively, indicating that both compounds may have potential application in optical field.

Keywords

Pentavanadate / Third-order nonlinear optical property / Crystal structure

Cite this article

Download citation ▾
Yanzhao Yu, Jiapeng Cao, Yan Xu. Two Pentavanadate-based Organic-inorganic Materials with Third-order NLO Properties. Chemical Research in Chinese Universities, 2019, 35(1): 1-4 DOI:10.1007/s40242-018-8276-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hayashi Y. Coord. Chem. Rev., 2011, 255: 2270.

[2]

Kioseoglou E., Petanidis S., Gabriel C., Salifoglou A. Coord. Chem. Rev., 2015, 301: 87.

[3]

Monakhov K. Y., Bensch W., Kögerler P. Chem. Soc. Rev., 2015, 44: 8443.

[4]

Inoue Y., Kodama S., Taya N., Sato H., Oh-ishi K., Ishii Y. Inorg. Chem., 2018, 57: 7491.

[5]

Chen J. J., Ye J. C., Zhang X. G., Symes M. D., Fan S. C., Long D. L., Zheng M. S., Wu D. Y., Croni L., Dong Q. F. Adv. Energy Mater., 2018, 8: 1701021.

[6]

Li J. K., Huang X. Q., Yang S., Ma H. W., Chi Y. N., Hu C. W. Inorg. Chem., 2015, 54: 1454.

[7]

Notario-Estévez A., Kozłowski P., Linnenberg O., Coen D. G., López X., Monakhov K. Y. Phys. Chem. Chem. Phys., 2018, 20: 17847.

[8]

Cao J. P., Shen F. C., Luo X. M., Cui C. H., Lan Y. Q., Xu Y. RSC Adv., 2018, 8: 18560.

[9]

Tao J., Zhang X. M., Tong M. L., Chen X. M. Dalton. Trans., 2001, 6: 770.

[10]

Xiao D. R., Hou Y., Wang E. B., Li Y. G., Lu J., Xu L., Hu C. W. J. Mol. Struct., 2004, 69: 123.

[11]

Xiao D. R., Xu Y., Hou Y., Wang E. B., Wang S. T., Li Y. G., Xu L., Hu C. W. Eur.^J. Inorg. Chem., 2004, 7: 1385.

[12]

Chen L., Jiang F. L., Lin Z. Z., Zhou Y. F., Yue C. Y., Hong M. C. J.^Am. Chem. Soc., 2005, 127: 8588.

[13]

Karet G. B., Sun Z. M., Streib W. E., Bollinger J. C., Hendrickson D. N., Christou G. Chem. Comm., 1999, 22: 2249.

[14]

Khan M. I., Ayesh S., Doedens R. J., Yu M. H., O’Connor C. J. Chem. Commun., 2005, 36: 49.

[15]

Liu X., Yi X. H., Zhang F. Chem. Inform., 2011, 42: 12.

[16]

Zhang H. M., Yang J., Kan W. Q., Liu Y. Y., Ma J. F. Cryst. Growth Des., 2016, 16: 265.

[17]

Campbell M. L., Sulejmanovic D., Schiller J. B., Turner E. M., Shiou-Jyh H., Whitehead D. C. Helv. Chim. Acta, 2017, 100: e1600338.

[18]

Ma H., Jen A. K. Y., Dalton L. R. Adv. Mater., 2002, 14: 1339.

[19]

Spasenović M., Betz M., Costa L., van Driel H. M. Phys. Rev. B, 2008, 77: 085201.

[20]

Senthil K., Kalainathan S., Kumar A. R., Aravindan P. G. RSC Adv., 2014, 4: 56112.

[21]

Qian Y., Xiao G. M., Wang G., Lin B. P., Cui Y. P., Sun Y. M. Dyes Pigm., 2007, 75: 218.

[22]

Chen S. H., Qin Z. H., Liu T. F., Wu X. Z., Li Y. J., Liu H. B., Song Y. L., Li Y. L. Phys. Chem. Chem. Phys., 2013, 15: 12660.

[23]

Al-Yasari A., Steerteghem N. V., Moll H. E., Clays K., Fielden J. Dalton Trans., 2016, 45: 2818.

[24]

Sheldrick G. M. SADABS, Program for Bruker Area Detector Absorption Correction, 1997.

[25]

Sheldrick G. M. SHELXL-2014, Program for Structure Refinement, Universität of Göttingen, 2014.

[26]

Zhang Y. T., Wang X. L., Zhou E. L., Wu X. S., Song B. Q., Shao K. Z., Su Z. M. Dalton Trans., 2016, 45: 3698.

[27]

Zhang Y. T., Wang X. L., Li S. B., Song B. Q., Shao K. Z., Su Z. M. Inorg. Chem., 2016, 55: 8770.

[28]

Breen J. M., Clérac R., Zhang L., Cloonan S. M., Kennedy E., Fee-ney M., McCabe T., Williams D. C., Schmitt W. Dalton Trans., 2012, 41: 2918.

[29]

Brown I. D. Chem. Rev., 2009, 109: 6858.

[30]

Karet G. B., Sun Z. M., Heinrich D. D., McCusker J. K., Folting K., Streib W. E., Huffman J. C., Hendrickson D. N., Christou G. Inorg. Chem., 1996, 35: 6450.

[31]

Zhang Z. J., Wojtas L., Zaworotko M. J. Chem. Sci., 2014, 5: 927.

[32]

Cao J. P., Xiong Y., Luo X. M., Chen L., Shi J., Zhou M. J., Xu Y. Dalton Trans., 2018, 47: 6054.

[33]

Luo X. M., Chen L., Dong Y. Y., Li J., Cui C. H., Cao J. P., Xu Y. Dalton Trans., 2018, 47: 9504.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/