A Highly Efficient and Recyclable Solid Acid Catalyst for Synthesis of Spiro-oxindole Dihydroquinazolinones Under Ultrasound Irradiation

Xiufang Yang , Xiaogang Wang , Tingting Wang , Weitao Wang , Jin Zhang , Yangmin Ma

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 33 -40.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 33 -40. DOI: 10.1007/s40242-018-8248-1
Article

A Highly Efficient and Recyclable Solid Acid Catalyst for Synthesis of Spiro-oxindole Dihydroquinazolinones Under Ultrasound Irradiation

Author information +
History +
PDF

Abstract

A simple, efficient and green procedure for the synthesis of spiro-oxindole dihyfroquinazolinones was developed by multi-component condensation of isatoic anhydride, aniline and isatin in the presence of a novel solid acid catalyst under ultrasound irradiation. The present environmentally benign protocol offers several advantages, such as shorter reaction time, a wide range of functional group tolerance, the use of an inexpensive heterogeneous catalyst, and a high yield of products via a simple experimental and work-up procedure. The mesoporous solid acid catalyst was directly prepared from phytic acid by microwave-sulfonation method without template. The phytic acid based solid acid was fully characterized by means of Fourier transform infrared spectroscopy(FTIR), Raman spectroscopy, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), and transmission electron microscopy(TEM). The catalyst can be recovered and reused for at least five runs without significant impact on the product yields.

Keywords

Microwave-sulfonation method / Solid acid catalyst / Spiro-oxindole dihyfroquinazolinone

Cite this article

Download citation ▾
Xiufang Yang, Xiaogang Wang, Tingting Wang, Weitao Wang, Jin Zhang, Yangmin Ma. A Highly Efficient and Recyclable Solid Acid Catalyst for Synthesis of Spiro-oxindole Dihydroquinazolinones Under Ultrasound Irradiation. Chemical Research in Chinese Universities, 2019, 35(1): 33-40 DOI:10.1007/s40242-018-8248-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chawla A., Batra C. J. Int. Med. Res., 2013, 4: 49.

[2]

Zhang J., Liu J., Ma Y. M., Ren D. C., Cheng P., Zhao J. W., Zhang F., Yao Y. Bioorg. Med. Chem. Lett., 2016, 26: 2273.

[3]

Bouley R., Ding D., Peng M., Bastian M., Lastochkin E., Song W., Suckow M. A., Schroeder V. A., Wolter W. R., Mobashery S., Chang M. J. Med. Chem., 2016, 59: 5011.

[4]

Mahdavi M., Pedrood K., Safavi M., Saeedi M., Pordeli M., Arde-stani S. K., Emami S., Adib M., Foroumadi A., Shafiee A. Eur.^J. Med. Chem., 2015, 95: 492.

[5]

Abdel-Aziz A. A., Abou-Zeid L. A. Bioorgan. Med. Chem., 2016, 24: 3818.

[6]

Al-Amiery A. A., Kadhum A. A. H., Shamel M., Satar M., Khalid Y., Mohamad A. B. Med. Chem. Res., 2013, 23: 236.

[7]

Arun Y., Bhaskar G. Bioorg. Med. Chem., 2013, 23: 1839.

[8]

Abbas S., El-Bayouki K. A. M., Basyouni W. M. Synth. Commun., 2016, 46: 993.

[9]

Chauhan C., Sharma R., Pandey A. Syn. Lett., 2012, 23: 2209.

[10]

Taghipour A. G. C. Lett. Org. Chem., 2011, 8: 470.

[11]

Shaterian H. R., Rigi F. Res. Chem. Intermed., 2013, 40: 2983.

[12]

Majid G., Kobra A., Hamed M. P. Hamid Reza S., Chinese J. Chem., 2011, 29: 1617.

[13]

Zhang J., Cheng P., Ma Y. M., Liu J., Miao Z., Ren D. C., Fan C., Liang M., Liu L. Tetrahedron Lett., 2016, 57: 5271.

[14]

Karimi-Jaberi Z., Arjmandi Z. Monatsh. Chem., 2011, 142: 631.

[15]

Shaterian H. R., Fahimi N., Azizi K. Res. Chem. Intermed., 2013, 40: 1879.

[16]

Liu Y., Lu L., Zhou Y. J., Wang X. S. Res. Chem. Intermed., 2013, 40: 2823.

[17]

Mohammadi A. A., Dabiri M., Qaraat H. Tetrahedron, 2009, 65: 3804.

[18]

Engen K., Sävmarker J., Rosenstrom U., Wannbery J., Lundback T., Jenmalm-Jensen A., Larhed M. Org. Process Res. Dev., 2014, 18: 1582.

[19]

Zhang J., Zhao J. W., Wang L. P., Liu J., Ren D. C., Ma Y. M. Tetra-hedron, 2016, 72: 936.

[20]

Gonçalves M., Mantovani M., Carvalho W. A., Rodrigues R., Man-delli D. Silvestre Albero J., Chem. Eng. J., 2014, 256: 468.

[21]

Zhang F., Fang Z., Wang Y. T. Appl. Energ., 2015, 155: 637.

[22]

Wen G., Wu S. Angew. Chem. Int. Ed., 2015, 54: 4105.

[23]

Yang X., Lee J., Chae S. R., Peterson V. K., Minett A. I., Yin Y., Har-ris A. T. Carbon, 2013, 59: 160.

[24]

Patel M. A., Luo F., Rabie M. R., Zhang Q., Flach C. R., Mendelsohn R., Garfunkel E., Szostak M., He H. ACS Nano, 2016, 10: 2305.

[25]

Devi B. L., Gangadhar K. N., Prasad P. S., Jagannadh B., Prasad P. B. Chem. Sus. Chem., 2009, 2: 617.

[26]

Wang W., Lu P., Tang H., Ma Y. M., Yang X. F. New^J. Chem., 2017, 41: 9256.

[27]

Chen B. H., Li J. T., Chen C. F. Ultrason. Chem., 2015, 23: 59.

[28]

Sardarian N. F. Curr. Organocatal., 2016, 3: 39.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/