QM/MM Investigations on the Bioluminescent Decomposition of Coelenterazine Dioxetanone in Obelin

Ling Yue

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 758 -766.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (5) : 758 -766. DOI: 10.1007/s40242-018-8237-4
Article

QM/MM Investigations on the Bioluminescent Decomposition of Coelenterazine Dioxetanone in Obelin

Author information +
History +
PDF

Abstract

The bioluminescent mechanism of colenterazine dioxetanone(CZD) in the photoprotein of Obelia(obelin) was investigated by the combined quantum and molecular mechanics(QM/MM) method at TD-DFT level, which involved the real protein environment in decomposition of 1,2-dioxetanones. The anionic decomposition of CZD in (CZD+H2O) model can go through a charge transfer(CT) catalyzed asynchronous-concerted process, which can be elucidated by the gradual reversible CT initiated luminescence(GRCTIL) mechanism. The neutral CZD in (CZDH+H2O) decomposes through an uncatalyzed non-CT biradical process. The anionic decomposition catalyzed by CT, in which the S0/S1 surface “double crossing” hence has ability to provide high quantum yield of singlet chemiexcitation is thus more possible in bioluminescence of photoprotein.

Keywords

1,2-Dioxetanone / Bioluminescence / Coelenterazine / Photoprotein / Quantum and molecular mechanics

Cite this article

Download citation ▾
Ling Yue. QM/MM Investigations on the Bioluminescent Decomposition of Coelenterazine Dioxetanone in Obelin. Chemical Research in Chinese Universities, 2018, 34(5): 758-766 DOI:10.1007/s40242-018-8237-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Morin J. G. Coelenterate Bioluminescence, Coelenterate Biology, 1974, New York: Academic Press, 397.

[2]

Shimomura O., Johnson F. H., Saiga Y. J. Cellular Comparative Physi., 1962, 59(3): 223.

[3]

Shimomura O. The Coelenterazines, Bioluminescence: Chemical Principles and Methods, 2006, Singapore: World Scientific.

[4]

Campbell A. K. Biochem. J., 1974, 143(2): 411.

[5]

Widder E. A. Science, 2010, 328(5979): 704.

[6]

Lourenço J. M. E. d, Silva J. C. G. P. d, Silva L. J. Lumin., 2018, 194: 139.

[7]

Shimomura O., Johnson F. H. Proc. Natl. Acad. Sci., 1978, 75(6): 2611.

[8]

Markova S. V., Vysotski E. S., Blinks J. R., Burakova L. P., Wang B. C., Lee J. Biochemistry, 2002, 41(7): 2227.

[9]

Hermann A., Cox J. A. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1995, 111(3): 337.

[10]

Charbonneau H., Walsh K. A., McCann R. O., Prendergast F. G., Cormier M. J., Vanaman T. C. Biochemistry, 1985, 24(24): 6762.

[11]

Fagan T. F., Ohmiya Y., Blinks J. R., Inouye S., Tsuji F. I. FEBS Lett., 1993, 333(3): 301.

[12]

Lewit-Bentley A., Réty S. Current Opinion in Structural Biology, 2000, 10(6): 637.

[13]

Rizzuto R., Simpson A. W. M., Brini M., Pozzan T. Nature, 1992, 358(6384): 325.

[14]

Usami K., Isobe M. Tetrahedron Lett., 1995, 36(47): 8613.

[15]

van Oort B., Eremeeva E. V., Koehorst R. B. M., Laptenok S. P. v, Amerongen H. v, Berkel W. J. H., Malikova N. P., Markova S. V., Vysotski E. S., Visser A. J. W. G., Lee J. Biochemistry, 2009, 48(44): 10486.

[16]

Naumov P., Wu C., Liu Y. J., Ohmiya Y. Photoch. Photobio. Sci., 2012, 11(7): 1151.

[17]

Matsumoto M. J. Photochem. Photobiol. C: Photochem. Rev., 2004, 5(1): 27.

[18]

Zhang Y., Chen L., Ju W., Xu Y. Chem. Res. Chinese Universities, 2014, 30(2): 194.

[19]

Yue L., Roca-Sanjuán D., Lindh R., Ferré N., Liu Y. J. J. Chem. Theory Comput., 2012, 8(11): 4359.

[20]

Yue L., Liu Y. J. J. Chem. Theory Comput., 2013, 9(5): 2300.

[21]

Yue L., Liu Y. J., Fang W. H. J. Am. Chem. Soc., 2012, 134(28): 11632.

[22]

Yue L., Lan Z., Liu Y. J. J. Phys. Chem. Lett., 2015, 6(3): 540.

[23]

Ding B. W., Liu Y. J. J. Am. Chem. Soc., 2017, 139(3): 1106.

[24]

Min C. G., Leng Y., Yang X. K., Ren A. M., Cui X. Y., Xu M. L., Wang S. H. Chem. Res. Chinses Universities, 2013, 29(5): 982.

[25]

Min C., Leng Y., Yang X. K., Huang S., Ren A. Chem. J. Chinese Universities, 2014, 35(3): 564.

[26]

Li Z. S., Zou L. Y., Ren A. M., Feng J. K. Chem. J. Chinese Universities, 2012, 33(12): 2757.

[27]

Wang X., Han B., Gao Y., Wang L., Bai M. Chem. Res. Chinese Universities, 2016, 32(3): 325.

[28]

Vacher M. F., Galván I., Ding B. W., Schramm S., Berraud-Pache R., Naumov P., Ferré N., Liu Y. J., Navizet I., Roca-Sanjuán D., Baader W. J., Lindh R. Chem. Rev., 2018, 118(15): 6927.

[29]

McCapra F., Chang Y. C. Chem. Commun., 1967, 19: 1011.

[30]

Usami K., Isobe M. Tetrahedron, 1996, 52(37): 12061.

[31]

Min C. G., Ferreira P. J. O. P. d, Silva L. J. Photochem. Photobiol. B: Biol., 2017, 174(2017): 18.

[32]

Min C. G. P. d, Silva L. E. d, Silva J. C. G., Yang X. K., Huang S. J., Ren A. M., Zhu Y. Q. Chem. Phys. Chem., 2017, 18(1): 117.

[33]

Liu Z. J., Vysotski E. S., Deng L., Lee J., Rose J., Wang B. C. Biochem. Biophys. Res. Commun., 2003, 311(2): 433.

[34]

Liu Z. J., Stepanyuk G. A., Vysotski E. S., Lee J., Markova S. V., Malikova N. P., Wang B. C. Proc. Natl. Acad. Sci., 2006, 103(8): 2570.

[35]

Case D. A., Darden T. A., Cheatham T. E. III, Simmerling C. L., Wang J., Duke R. E. R., Luo R. C. W., Zhang W., Merz K. M., Roberts B., Hayik S., Roitberg A., Seabra G., Swails J., Goetz A. W., Kolossváry I., Wong K. F., Paesani F., Vanicek J., Wolf R. M., Liu J., Wu X., Brozell S. R., Steinbrecher T., Gohlke H., Cai Q., Ye X., Wang J., Hsieh M. J., Cui G., Roe D. R., Mathews D. H., Seetin M. G., Salomon-Ferrer R. C., Sagui V. B., Luchko T., Gusarov S., Kovalenko A., Kollman P. A. AMBER 12, 2012.

[36]

Šali A., Blundell T. L. J. Mol. Biol., 1993, 234(3): 779.

[37]

Vreven T., Morokuma K. F. Ö, Schlegel H. B., Frisch M. J. J. Comput. Chem., 2003, 24(6): 760.

[38]

Melaccio F., Olivucci M., Lindh R., Ferré N. Int. J. Quantum Chem., 2011, 111(13): 3339.

[39]

Gonzalez C., Schlegel H. B. J. Phys. Chem., 1990, 94(14): 5523.

[40]

Yanai T., Tew D. P., Handy N. C. Chem. Phys. Lett., 2004, 393(1—3): 51.

[41]

Peach M. J. G., Helgaker T., Salek P., Keal T. W., Lutnæs O. B., Tozer D. J., Handy N. C. Phys. Chem. Chem. Phys., 2006, 8(5): 558.

[42]

Hariharan P. C., Pople J. A. Theoret. Chim. Acta, 1973, 28(3): 213.

[43]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M. X., Li H. P. H., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision A. 02, 2009, Wallingford CT: Gaussian Inc..

[44]

Senn H. M., Thiel W. Angew. Chem. Int. Ed., 2009, 48(7): 1198.

[45]

Rokob T. A., Rulíšek L. J. Comput. Chem., 2012, 33(12): 1197.

[46]

Singh U. C., Kollman P. A. J. Comput. Chem., 1984, 5(2): 129.

[47]

Nakamura H., Truhlar D. G. J. Chem. Phys., 2003, 118(15): 6816.

[48]

Adam W., Baader W. J. J. Am. Chem. Soc., 1985, 107(2): 410.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/