Bentonite Reinforced Tough Composite Hydrogels as Potential Artificial Articular Cartilage

Xueting Lu , Wei Feng , Honglei Wang , Qianqian Hu , Shuang Guan , Peipei Guo

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 1028 -1034.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 1028 -1034. DOI: 10.1007/s40242-018-8219-6
Article

Bentonite Reinforced Tough Composite Hydrogels as Potential Artificial Articular Cartilage

Author information +
History +
PDF

Abstract

Novel tough composite hydrogels were prepared from inorganic bentonite(IB), polyvinyl alcohol(PVA) and polyethylene glycol(PEG) by means of a freeze-thaw technique, during which IB acted as multifunctional physically crosslinking junction and a filler to bridge the 3D network hydrogel; while the physical adsorption between IB and the polymer chains served as sacrificial bonds and increased the energy dissipation efficiency. The effects of different content of IB(w IB) on the morphological, thermal, swelling, and mechanical properties of the hydrogels were investigated. It was found that the added IB promoted the material crosslinking and stability, and the mechanical properties of the hydrogels were significantly improved with increasing w IB. The highest tensile stress of the hydrogel was achieved(1.1 MPa) when w IB was 5%. The synthesized hydrogels with high mechanical strength and low friction coefficient are potential candidate materials for artificial cartilage.

Keywords

Bentonite / Polyvinyl alcohol / Polyethylene glycol / Freeze-thaw / Hydrogel

Cite this article

Download citation ▾
Xueting Lu, Wei Feng, Honglei Wang, Qianqian Hu, Shuang Guan, Peipei Guo. Bentonite Reinforced Tough Composite Hydrogels as Potential Artificial Articular Cartilage. Chemical Research in Chinese Universities, 2018, 34(6): 1028-1034 DOI:10.1007/s40242-018-8219-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sônia M. M., Antonio C. A. Artif. Organs., 2000, 3: 174.

[2]

Michelle M. B., Timothy C. O. Wear, 2012, 2: 201.

[3]

Jeon O., Shin J. Y., Marks R., Hopkins M., Kim T. H., Park H. H., Alsberg E. Chem. Mater., 2017, 29: 8425.

[4]

Peppas N. A., Hilt J. Z., Khademhosseini A., Langer R. Adv. Mater., 2006, 11: 1345.

[5]

Hu C., Wang M. X., Sun L., Yang J. H., Zrínyi M., Chen Y. M. Macromol. Rapid Comm., 2017, 38: 1600788.

[6]

Blum M. M., Ovaert T. C. Mat. Sci. Eng. C, 2013, 33: 4377.

[7]

Baykal D., Underwood R. J., Mansmann K., Marcolongo M., Kurtz S. M. J. Mech. Behav. Biomed., 2013, 28: 263.

[8]

Nigmatullin R., Bencsik M., Gao F. G. Soft Matter, 2014, 10: 2035.

[9]

Wang J. F., Lin L., Cheng Q. F., Jiang L. Angew. Chem. Int. Ed., 2012, 51: 4754.

[10]

Li Z. Y., Su Y. L., Xie B. Q., Wang H. L., Wen T., He C. C., Shen H., Wu D. C., Wang D. J. J. Mater. Chem. B, 2013, 1: 1755.

[11]

Gong J. P., Katsuyama Y., Kurokawa T., Osada Y. Adv. Mater., 2003, 15: 1155.

[12]

Chen Q., Zhu L., Zhao C., Wang Q. M., Zheng J. Adv. Mater., 2013, 25: 4171.

[13]

Yang Y. Y., Wang X., Yang F., Wang L. N., Wu D. C. Adv. Mater., 2018, 30: 1707071.

[14]

Chen Q., Zhu L., Chen H., Yan H. L., Huang L. N., Yang J., Zheng J. Adv. Funct. Mater., 2015, 25: 1598.

[15]

Chen Q., Wei D. D., Chen H., Zhu L., Jiao C. C., Liu G., Huang L. N., Yang J., Wang L. B., Zheng J. Macromolecules, 2015, 48: 8003.

[16]

Yang J. W., Bai R. B., Suo Z. G. Adv. Mater., 2018, 30: 1800671.

[17]

Okumura Y., Ito K. Polym. Prepr., 2003, 4: 614.

[18]

Takamasa S., Takuro M., Yamamoto Y.J., Ito C., Yoshida R. Macromolecules, 2008, 41: 5379.

[19]

Gaharwar A. K., Dammu S. A., Canter J. M., Wu C. J., Schmidt G. Biomacromolecules, 2011, 12: 1641.

[20]

Xu X. B., S. Y., Gao C. M., Wang X. G., Bai X., Gao N. N., Liu M. Z. Chem. Eng. J., 2014, 240: 331.

[21]

Gao G. R., Du G. L., Cheng Y. J., Fu J. J. Mater. Chem. B, 2014, 2: 1539.

[22]

Yu L. N., Wang D., Tan Y., Du J., Xiao Z. X., Wu R. L., Xu S. M., Huang J. B. Appl. Clay Sci., 2018, 156: 53.

[23]

Sarkar D. J., Singh A. Carbohyd. Polym., 2017, 156: 303.

[24]

Tien Y. M., Wu P. L., Huang W. H., Kuo M. F., Chu C. A. Powder Technol., 2007, 173: 140.

[25]

Liebmann P., Loew G., Burt S., Lawless J., MAcElroy R. D. Inorg. Chem., 1982, 21: 1586.

[26]

Oh S. T., Kim W. R., Kim S. H., Chung Y. C., Park J. S. Fibers Polym., 2011, 12: 159.

[27]

Kheirabadi M., Bagheri R., Kabiri K. Polym. Bull., 2015, 72: 1663.

[28]

Oka M., Noguchi T., Kumar P., Keuchi K., Yamamuro T., Hyon S. H., Ikada Y. Clin. Mater., 1990, 361.

[29]

Chen K., Zhang D. K., Cui X. T., Wang Q. L. RSC Adv., 2015, 5: 24215.

[30]

Gonzalezn J. S., Alvarez V. A. J. Mech. Behav. Biomed., 2014, 34: 47.

[31]

Zhang X. Y., Guo X. L., Yang S. G., Tan S. X., Li X. F., Dai H. J., Yu X. L., Zhang X. L., Weng N., Jian B., Xu J. J. Appl. Polym. Sci., 2009, 112: 3063.

[32]

Wang L. Y., Shan G. R., Pan P. J. RSC Adv., 2014, 4: 63513.

[33]

Gupta A., Upadhyay N. K., Parthasarathy S., Rajagopal C., Roy P. K. J. Appl. Polym. Sci., 2013, 128: 4031.

[34]

Milner P. E., Parkes M., Puetzer J. L., Chapman R., Stevens M. M., Cann P., Jeffers J. Acta Biomater., 2018, 65: 102.

[35]

Gao G. R., Du G. L., Sun Y. N., Fu J. ACS Appl. Mater. Inter., 2015, 7: 5029.

[36]

Haraguchi K., Xu Y. J., Li G. Macromol. Rapid Commun., 2010, 31: 718.

[37]

Tien Y. M., Wu P. L., Huang W. H., Kuo M. F., Chu C. A. Powder Technol., 2007, 173: 140.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/