Effective Removal of Tetracycline by Using Biochar Supported Fe3O4 as a UV-Fenton Catalyst

Xiaodan Yu , Xinchen Lin , Weiguang Li , Wei Feng

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 79 -84.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 79 -84. DOI: 10.1007/s40242-018-8213-z
Article

Effective Removal of Tetracycline by Using Biochar Supported Fe3O4 as a UV-Fenton Catalyst

Author information +
History +
PDF

Abstract

Novel Fe3O4-decorate hierarchical porous carbon skeleton derived from maize straw(Fe3O4@MSC) was synthesized by a facile co-precipitation process and a calcination process, which was developed as a UV assisted heterogeneous Fenton-like catalyst. The as-synthesized catalysts were characterized via X-ray powder diffraction(XRD), scanning electron microscope(SEM), transmission electron microscope(TEM), Brunauer-Emmet-Teller(BET) and vibrating sample magnetometer(VSM) at room temperature. The morphology and structure analysis revealed that the as-prepared Fe3O4@MSC retained the original pore morphology of the maize straw material. The non-uniform polyhedral Fe3O4 grew on the whole surface of the MSC, which reduced the aggragation of Fe3O4 and provided more active sites to strengthen the UV-assisted Fenton-like reaction. As a result, the tetracycline(TC) degradation efficiency after 40 min reaction and total organic carbon(TOC) removal efficiency after 2 h reaction of Fe3O4@MSC catalyzing UV-Fenton system reached 99.2% and 72.1%, respectively, which were more substantial than those of Fe3O4@MSC/H2O2(31.5% and 2%), UV/H2O2 system(68% and 23.4%) and UV/Fe3O4/H2O2(80% and 37.5%). The electron spin resonance(ESR) results showed that the OH played an important role in the catalytic reaction. A possible degradation pathway of TC was proposed on the basis of the identified intermediates. Overall, the UV assisted heterogeneous Fenton-like process in Fe3O4@MSC improved the cycle of Fe3+/Fe2+ and activated the interfacial catalytic site, which eventually realized the enhancement of degradation and mineralization to tetracycline.

Keywords

Fe3O4 / Carbon skeleton of maize straw / Heterogeneous Fenton-like catalyst / UV irradiation / Degradation of tetracycline

Cite this article

Download citation ▾
Xiaodan Yu, Xinchen Lin, Weiguang Li, Wei Feng. Effective Removal of Tetracycline by Using Biochar Supported Fe3O4 as a UV-Fenton Catalyst. Chemical Research in Chinese Universities, 2019, 35(1): 79-84 DOI:10.1007/s40242-018-8213-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng K., Di M., Zhang J., Bao W., Liang D., Pang G., Fang Z., Li C. Chem. Res. Chinese Universities, 2017, 33(4): 648.

[2]

Qiu B., Li Q., Shen B., Xing M., Zhang J. Appl. Catal. B: Environ., 2016, 183: 216.

[3]

Xu D., Zhang Y., Cheng F., Dai P. J. Taiwan Inst. Cheml. E, 2016, 60: 376.

[4]

Zhou L., Shao Y., Liu J., Ye Z., Zhang H., Ma J., Jia Y., Gao W., Li Y. ACS Appl. Mater. Inter., 2014, 6(10): 7275.

[5]

Cleveland V., Bingham J. P., Kan E. Sep. Purif. Technol., 2014, 133: 388.

[6]

Yang M., Ma J., Sun Y., Xiong X., Li C., Li Q., Chen J. Chem. J. Chinese Universities, 2014, 35(3): 570.

[7]

Li Q. M. Chem. Res. Chinese Universities, 2013, 29(5): 1011.

[8]

Liang R., Shen L., Jing F., Qin N., Wu L. ACS Appl. Mater. Inter., 2015, 7(18): 9507.

[9]

Wang P., Wang L., Sun Q., Qiu S., Liu Y., Zhang X., Liu X., Zheng L. Mater. Lett., 2016, 183: 61.

[10]

Zhang Y., Gao Z., Song N., Li X. Electrochim. Acta, 2016, 222: 1257.

[11]

Li Y., Wang G., Wei T., Fan Z., Yan P. Nano Energy, 2016, 19: 165.

[12]

Hu X., Xiong W., Wang W., Qin S., Cheng H., Zeng Y., Wang B., Zhu Z. ACS Sustain. Chem. Eng., 2016, 4(3): 1201.

[13]

Xiong W., Gao Y., Wu X., Hu X., Lan D., Chen Y., Pu X., Zeng Y., Su J., Zhu Z. ACS Appl. Mater. Inter., 2014, 6(21): 19416.

[14]

Yang J., Zhao Y., Ma S., Zhu B., Zhang J., Zheng C. Environ. Sci. Technol., 2016, 50(21): 12040.

[15]

Zhang H., Wang Z., Li R., Guo J., Li Y., Zhu J., Xie X. Chemos-phere, 2017, 185: 351.

[16]

Jin H., Wang X., Shen Y., Gu Z. J. Anal. Appl. Pyrol., 2014, 110: 18.

[17]

Qin D., Zhang F., Dong S., Zhao Y., Xu G., Zhang X. RSC Adv., 2016, 6(108): 106218.

[18]

Qin D., Liu Z., Zhao Y., Xu G., Zhang F., Zhang X. Carbon, 2018, 130: 664.

[19]

Liu X., Yin H., Lin A., Guo Z. J. Environmental Chemical Engi-neering, 2017, 5(1): 870.

[20]

Zhang X., Dong Z., Liu S., Shi Y., Dong Y., Feng W. Sensor. Actuat. B: Chem., 2017, 243: 1224.

[21]

Jin S., Deng H., Long D., Liu X., Zhan L., Liang X., Qiao W., Ling L. J. Power Sources, 2011, 196(8): 3887.

[22]

Xia H., Wan Y., Yuan G., Fu Y., Wang X. J. Power Sources, 2013, 241: 486.

[23]

Chai F., Li K., Song C., Guo X. J. Colloid Interf. Sci., 2016, 475: 119.

[24]

Zhang Z., Kong J. J. Hazard. Mater., 2011, 193: 325.

[25]

Li W., Wang Y., Irini A. Chem. Eng. J., 2014, 244: 1.

[26]

Wu W., Liu G., Xie Q., Liang S., Zheng H., Yuan R., Su W., Wu L. Green Chem., 2012, 14(6): 1705.

[27]

Wu W., Lin R., Shen L., Liang R., Yuan R., Wu L. Phys. Chem. Chem. Phys., 2013, 15(44): 19422.

[28]

Wu W., Liang S., Chen Y., Shen L., Yuan R., Wu L. Mater. Res. Bull., 2013, 48(4): 1618.

[29]

Liang S., Liang R., Wen L., Yuan R., Wu L., Fu X. Appl. Catal. B: Environ., 2012, 125: 103.

[30]

Liang S., Wen L., Liu G., Zhu S., Yuan R., Wu L. Catal. Today, 2013, 201: 175.

[31]

Wang Y., Zhang H., Zhang J., Lu C., Huang Q., Wu J., Liu F. J. Hazard. Mater., 2011, 192(1): 35.

[32]

Zhu X. D., Wang Y. J., Sun R. J., Zhou D. M. Chemosphere, 2013, 92(8): 925.

[33]

Wang X., Jia J., Wang Y. Chem. Eng. J., 2017, 315: 274.

[34]

Han S. K., Hwang T. M., Yoon Y., Kang J. W. Chemosphere, 2011, 84(8): 1095.

[35]

Giannakis S., Liu S., Carratalà A., Rtimi S., Talebi A. M., Bensimon M., Pulgarin C. J. Hazard. Mater., 2017, 339: 223.

[36]

Malato S., Caceres J. Environ. Sci. Technol., 2001, 35: 8.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/