Mixed-phase Mesoporous TiO2 Film for High Efficiency Perovskite Solar Cells

Yan Xiang , Jia Zhuang , Zhu Ma , Honglin Lu , Haoran Xia , Weiya Zhou , Tao Zhang , Haimin Li

Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 101 -108.

PDF
Chemical Research in Chinese Universities ›› 2019, Vol. 35 ›› Issue (1) : 101 -108. DOI: 10.1007/s40242-018-8201-3
Article

Mixed-phase Mesoporous TiO2 Film for High Efficiency Perovskite Solar Cells

Author information +
History +
PDF

Abstract

Mesoporous scaffold structures have played great roles in halide perovskite solar cells(PSCs), due to the excellent photovoltaic performance and commercial perspective of mesoporous PSCs. Here, we reported a mixed-phase TiO2 mesoporous film as an efficient electron transport layer(ETL) for mesoporous perovskite solar cells. Due to the improved crystal phase, film thickness and nanoparticle size of TiO2 layer, which were controlled by varying the one-step hydrothermal reaction time and annealing time, the PSCs exhibited an outstanding short circuit photocurrent density of 25.27 mA/cm2, and a maximum power conversion efficiency(PCE) of 19.87%. It is found that the ultra-high J sc attributes to the excellent film quality, light capturing and excellent electron transport ability of mixed-phase TiO2 mesoporous film. The results indicate that mix-phase mesoporous metal oxide films could be a promising candidate for producing effective ETLs and high efficiency PSCs.

Keywords

Mesoporous perovskite solar cell / Mixed-phase TiO2 / Hydrothermal method / Nanoparticle / Electron recombination

Cite this article

Download citation ▾
Yan Xiang, Jia Zhuang, Zhu Ma, Honglin Lu, Haoran Xia, Weiya Zhou, Tao Zhang, Haimin Li. Mixed-phase Mesoporous TiO2 Film for High Efficiency Perovskite Solar Cells. Chemical Research in Chinese Universities, 2019, 35(1): 101-108 DOI:10.1007/s40242-018-8201-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A., Teshima K., Shirai Y., Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

[2]

Kim H. S., Lee C. R., Im J. H., Lee K. B., Moehl T., Marchioro A., Moon S. J., Humphry-Baker R., Yum J. H., Moser J. H., Grätzel M., Park N. G. Sci. Rep., 2012, 2(8): 591.

[3]

Zhou H., Chen Q., Li G., Luo S., Song T., Duan H. S., Hong Z., You J., Liu Y., Yang Y. Science, 2014, 345(6196): 542.

[4]

Yang W. S., Noh J. H., Jeon N. J., Kim Y. C., Ryu S., Seo J., Seok S. I. Science, 2015, 348(6240): 1234.

[5]

Yang W. S., Park B. W., Jung E. H., Jeon N. J., Kim Y. C., Lee D. U., Shin S. S., Seo J., Kim E. K., Noh J. H., Seok S. I. Science, 2017, 356(6345): 1376.

[6]

Rong Y., Hu Y., Mei A., Tan H., Saidaminov M. I., Seok S. I., McGehee M. D., Sargent E. H. Science, 2018, 361(6408): eaat8235.

[7]

Chen Q., Marco N. D., Yang Y., Song T. B., Chen C. C., Zhao H., Hong Z., Zhou H., Yang Y. Nano Today, 2015, 10(3): 355.

[8]

Green M. A., Ho-Baillie A., Snaith H. J. Nat. Photonics, 2014, 8(7): 506.

[9]

Correabaena J. P., Saliba M., Buonassisi T., Grätzel M., Abate A., Tress W., Hagfeldt A. Science, 2017, 358(6364): 739.

[10]

Yang G., Tao H., Qin P., Ke W., Fang G. J. Mater. Chem. A, 2016, 4(11): 3970.

[11]

Pathak S. K., Abate A., Ruckdeschel P., Roose B., Gödel K. C., Vaynzof Y., Santhala A., Watanabe S. I., Hollman D. J., Noel N., Sepe A., Wiesner U., Friend R., Snaith H. J., Steiner U. Adv. Funct. Mater., 2015, 24(38): 6046.

[12]

Heo J. H., You M. S., Chang M. H., Yin W., Ahn T. K., Lee S. J., Sung S. J., Kim D. H., Im S. H. Nano Energy, 2015, 15: 530.

[13]

Yin X., Guo Y., Xue Z., Xu P., He M., Liu B. Nano Research, 2015, 8(6): 1997.

[14]

Zhang H., Shi J., Xu X., Zhu L., Luo Y., Li D., Meng Q. J. Mater. Chem. A, 2016, 4(40): 15383.

[15]

Zhong D., Cai B., Wang X., Yang Z., Xing Y., Miao S., Zhang W. H., Li C. Nano Energy, 2015, 11: 409.

[16]

Wang X., Li Z., Xu W., Kulkarni S. A., Batabyal S. K., Zhang S., Cao A., Wong L. H. Nano Energy, 2015, 11: 728.

[17]

Tao H., Ke W., Wang J., Liu Q., Wan J., Yang G., Fang G. J. Power Sources, 2015, 290: 144.

[18]

Qiu J., Qiu Y., Yan K., Zhong M., Mu C., Yan H., Yang S. Nanoscale, 2013, 5(8): 3245.

[19]

Jaramillo-Quintero O. A. S. d l, Fuente M., Sanchez R. S., Re-calde I. B., Juarez-Perez E. J., Rincon M. E., Mora-Sero I. Nanos-cale, 2016, 8(12): 6271.

[20]

Yu Y., Li J., Geng D., Wang J., Zhang L., Andrew T. L., Arnold M. S., Wang X. ACS Nano, 2015, 9(1): 564.

[21]

Burschka J., Pellet N., Moon S. J., Humphry-Baker R., Gao P., Na-zeeruddin M. K., Grätzel M. Nature, 2013, 499(7458): 316.

[22]

Jeon N. J., Noh J. H., Yang W. S., Kim Y. C., Ryu S., Seo J., Seok S. I. Nature, 2015, 517(7535): 476.

[23]

Wu W., Huang F., Chen D., Cheng Y. B., Caruso R. A. Adv. Funct. Mater., 2015, 25(21): 3264.

[24]

Xiang Y., Ma Z., Zhuang J., Lu H., Jia C., Luo J., Li H., Cheng X. J. Phys. Chem. C, 2017, 121(37): 20150.

[25]

Zhang Z. L., Li J. F., Wang X. L., Qin J. Q., Shi W. J., Liu Y. F., Gao H. P., Mao Y. L. Nanoscale Res. Lett., 2017, 12(1): 43.

[26]

Li J. F., Zhang Z. L., Gao H. P., Zhang Y., Mao Y. L. J. Mater. Chem. A, 2015, 3(38): 19476.

[27]

Yin H., Wada Y., Kitamura T., Kambe S., Murasawa S., Mori H., Sa-kata T., Yanagida S. J. Mater. Chem., 2001, 11(6): 1694.

[28]

Liu B., Aydil E. S. J. Am. Chem. Soc., 2009, 131(11): 3985.

[29]

Subramanian A., Ho C. Y., Wang H. J. Alloys Compd., 2013, 572(5): 11.

[30]

Kim H., Lim K. G., Lee T. W. Energy Environ. Sci., 2016, 9(1): 12.

[31]

Jung H. S., Park N. G. Small, 2015, 11: 10.

[32]

Luo J., Jia C., Wan Z., Han F., Zhao B., Wang R. J. Power Sources, 2017, 342: 886.

[33]

Kim H. S., Lee J. W., Yantara N., Boix P. P., Kulkarni S. A., Mhai-salkar S., Grätzel M., Park N. G. Nano Lett., 2013, 13(6): 2412.

[34]

Ma Z., Lu H., Zhao F., Xiang Y., Zhuang J., Li H. RSC Advances, 2017, 7(47): 29357.

[35]

Moraseró I., Bisquert J., Fabregatsantiago F., Garcia-Belmonte G. Nano Lett., 2006, 6(4): 640.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/