Molecular Dynamics Simulation: Influence of External Electric Field on Bubble Interface in Air Flotation Process

Leichao Wu , Yong Han , Qianrui Zhang , Lin Zhu , Chuanxin Zhang , Ruikuan Zhao

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 939 -944.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 939 -944. DOI: 10.1007/s40242-018-8195-x
Article

Molecular Dynamics Simulation: Influence of External Electric Field on Bubble Interface in Air Flotation Process

Author information +
History +
PDF

Abstract

Molecular dynamics(MD) simulation was performed to investigate the influence of external electric field on the vapour-liquid interface of the bubble during the process of toluene separation by air flotation. The physico-chemical properties of vapour-liquid interface, surface tension, probability of a hydrogen bonding near the vapour-liquid interface and the viscosity of liquid phase caused by external electric field were analyzed. The results show that the angle between the water molecule dipole moment and the normal z axis in the vapour phase changes smaller when the external electric field is applied. The surface tension and the probability of hydrogen bonding near the vapour-liquid interface increase with the increase of electric field strength. And the viscosity also increases under an external electric field. The results confirm that the external electric field has a positive effect on the performance of bubbles in air flotation, which may provide useful guidance for the combination of electric field and air flotation technology.

Keywords

Molecular dynamics simulation / Vapour-liquid interface / Air flotation / Electric field / Toluene

Cite this article

Download citation ▾
Leichao Wu, Yong Han, Qianrui Zhang, Lin Zhu, Chuanxin Zhang, Ruikuan Zhao. Molecular Dynamics Simulation: Influence of External Electric Field on Bubble Interface in Air Flotation Process. Chemical Research in Chinese Universities, 2018, 34(6): 939-944 DOI:10.1007/s40242-018-8195-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Silva S. S. D., Chiavone-Filho O., Neto E. L. D. B., Nascimento C. A. O. J. Hazard. Mater., 2012.

[2]

Bensadok K., Belkacem M., Nezzal G. Desalination, 2007, 206(1): 440.

[3]

Lima L. M. O. D., Silva J. H. D., Patricio A. A. R., Neto E. L. D. B., Neto A. A. D., Dantas T. N. D. C. Petrol. Sci. Technol., 2008, 26(9): 994.

[4]

Li X. B., Liu J. T., Wang Y. T., Wang C. Y., Zhou X. H. J. China Univ. Mining Technol., 2007, 17(4): 546.

[5]

Takahashi M. J. Phys. Chem. B., 2005, 109(46): 21858.

[6]

Yuan S. L., Chen Y. J., Xu G. Y. Colloid. Surface. A, 2006, 280(1): 108.

[7]

Lewis M. A. Water. Res., 1991, 25(1): 101.

[8]

Mckim J. M., Arthur J. W., Thorslund T. W. B. Environ. Contam. Tox., 1975, 14(1): 1.

[9]

Dolan J. M., Hendricks A. C. J. Water. Pollut. Control. Fed., 1976, 48(11): 2570.

[10]

Thiebaut J. M., Vaubourg J. P., Roussy G. J. Phys. D. Appl. Phys., 1989, 22(1): 154.

[11]

Birinci M., Miller J. D., Sarikaya M., Wang X. Miner. Eng., 2010, 23(10): 813.

[12]

Murugananthan M., Raju G. B., Prabhakar S. Sep. Purif. Technol., 2004, 40(1): 69.

[13]

Van D. S. D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berend-sen H. J. J. Comput. Chem., 2005, 26(16): 1701.

[14]

Hu Y. D. Environ. Engine., 2012.

[15]

Agarwal A., Ng W. J., Liu Y. Chemosphere, 2011, 84(9): 1175.

[16]

Craig V. S. J. Soft Matter, 2010, 7(1): 40.

[17]

Du H., Rasaiah J. C., Miller J. D. J. Phys. Chem. B, 2007, 111(1): 209.

[18]

Berendsen H. J. C., Grigera J. R., Straatsma T. P. J. Phys. Chem., 1987, 91(24): 6269.

[19]

Vega C., Miguel E. D. J. Chem. Phys., 2007, 126(15): 154707.

[20]

Chen F., Smith P. E. J. Chem. Phys., 2007, 126(22): 221101.

[21]

Jorgensen W. L., David S. M., Tiradorives J. J. Am. Chem. Soc., 1996, 118(45): 11225.

[22]

Dodda L. S., Cabeza D. V. I., Tiradorives J., Jorgensen W. L. Nucleic Acids Res., 2017.

[23]

Iseleholder R. E., Mitchell W., Ismail A. E. J. Chem. Phys., 2012, 137(17): 1133.

[24]

Zhao L., Lin S., Mendenhall J. D., Yuet P. K., Blankschtein D. J. Phys. Chem B., 2011, 115(19): 6076.

[25]

Smith P. E., Gunsteren W. F. V. Chem. Phys. Lett., 1993, 215(4): 315.

[26]

Yuet P. K., Blankschtein D. J. Phys. Chem B, 2010, 114(43): 13786.

[27]

Geissler P. L. Annu. Rev. Phys. Chem., 2013, 64(1): 317.

[28]

Fan Y., Chen X., Yang L., Cremer P. S., Gao Y. Q. J. Phys. Chem. B, 2009, 113(34): 11672.

[29]

Hess B. J. Chem. Phys., 2002, 116(1): 209.

[30]

Zhao L., Cheng T., Sun H. J. Chem. Phys., 2008, 129(14): 144501.

[31]

Zhu L., Han Y., Zhang C., Zhao R., Tang S. RSC Adv., 2017, 7(75): 47583.

[32]

Song Y. M., Lenore L. D. Mol. Simul., 2010.

[33]

Savinykh B. V., Zarinov R. N., Usmanov A. G. J. Engine Phys., 1983, 45(6): 1412.

[34]

Ostapenko A. A. Tech. Phys., 1998, 43(1): 35.

[35]

Wei S., Zhong C., Su Y. H. Mol. Simul., 2005, 31(8): 555.

[36]

Xu J. H., Li S. W., Chen G. G., Luo G. S. Aiche. J., 2006, 52(6): 2254.

[37]

Geiger A., Stillinger F. H., Rahman A. J. Chem. Phys., 1979, 70(9): 4185.

[38]

Sciortino F., Geiger A., Stanley H. E. J. Chem. Phys., 1992, 96(5): 3857.

[39]

Zhang X., Zhang Q., Zhao D. X. Acta Phys-Chim. Sin., 2011, 27(27): 2547.

[40]

Liu P., Harder E., Berne B. J. J. Phys. Chem B, 2005, 109(7): 2949.

[41]

Kunieda M., Nakaoka K., Liang Y., Miranda C. R., Ueda A., Taka-hashi S. J. Am. Chem. Soc., 2010, 132(51): 18281.

[42]

Harris J. G. J. Phys. Chem., 1992, 96(12): 5077.

[43]

Ismail A. E., Grest G. S., Stevens M. J. J. Chem. Phys., 2006, 125(10): 014702.

[44]

Bateni A., Amirfazli A., Neumann A. W. Colloid Surface A, 2006, 289(1): 25.

[45]

Bateni A., Susnar S. S., Amirfazli A., Neumann A. W. Langmuir, 2004, 20(18): 7589.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/