Crystal Structures, Thermal Behavior Analysis and Thermal Safety of Two Energetic Salts of Hydrazinyl-1,2,4,5-tetrazine with 3,5-Dinitrosalicylic Acid

Xiang Chen , Tian Zeng , Cong Zhang , Zhaoqi Guo , Shuailei Li , Tao Mai , Rong Gao , Haixia Ma

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 959 -964.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (6) : 959 -964. DOI: 10.1007/s40242-018-8169-z
Article

Crystal Structures, Thermal Behavior Analysis and Thermal Safety of Two Energetic Salts of Hydrazinyl-1,2,4,5-tetrazine with 3,5-Dinitrosalicylic Acid

Author information +
History +
PDF

Abstract

Two energetic salts, DPHT DNS H2O(1) and DHT 2DNS 2H2O(2)[DPHT=3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-hydrazinyl-1,2,4,5-tetrazine; DHT=3,6-dihydrazinyl-1,2,4,5-tetrazine], were synthesized from S-tetrazine with 3,5-dinitrosalicylic acid(DNS). Compounds 1 and 2 were structurally characterized by elemental analysis, infra-red spectroscopy, and single-crystal X-ray diffraction. The thermal behavior of the title compounds was studied by differential scanning calorimetry(DSC) and thermogravimetry(TG). The non-isothermal decomposition kinetics of compound 2 were investigated. The self-accelerating decomposition temperature, thermal ignition temperature, and critical temperatures of thermal explosion were obtained to evaluate the thermal safety of compound 2. The results show compounds 1 and 2 decompose at 150.8 and 179.2 °C, respectively. The T SADT and T b of compound 2 are higher than those of DHT, which indicates compound 2 is a potential candidate for energetic materials that have good thermal stability.

Keywords

Tetrazine compound / Dinitrosalicylic acid(DNS) / Crystal structure / Thermal behavior / Thermal safety

Cite this article

Download citation ▾
Xiang Chen, Tian Zeng, Cong Zhang, Zhaoqi Guo, Shuailei Li, Tao Mai, Rong Gao, Haixia Ma. Crystal Structures, Thermal Behavior Analysis and Thermal Safety of Two Energetic Salts of Hydrazinyl-1,2,4,5-tetrazine with 3,5-Dinitrosalicylic Acid. Chemical Research in Chinese Universities, 2018, 34(6): 959-964 DOI:10.1007/s40242-018-8169-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chavez D. E., Hiskey M. A., Gilardi R. D. Org. Lett., 2004, 6(17): 2889.

[2]

Chavez D. E., Tappan B. C., Hiskey M. A., Son S. F., Harry H., Montoya D., Hagelberg S. Propell. Explos. Pyrot., 2005, 30(6): 412.

[3]

Huynh M. H. V., Hiskey M. A., Chavez D. E., Naud D. L., Gilardi R. D. J. Am. Chem. Soc., 2005, 127(36): 12537.

[4]

Chavez D. E., Parrish D. A. J. Heterocyclic. Chem., 2009, 46(1): 88.

[5]

Chavez D. E., Hanson S. K., Veauthier J. M., Parrish D. A. Angew. Chem. Int. Ed., 2013, 52(27): 6876.

[6]

Breiner M. M., Chavez D. E., Myers T. W., Gilardi R. D. Synlett., 2015, 26(4): 557.

[7]

Piercey D. G., Chavez D. E., Heimsch S., Kirst C., Klapötke T. M., Stierstorfer J. Propell. Explos. Pyrot., 2015, 40(4): 491.

[8]

Yin P., Shreeve J. M. Angew. Chem. Int. Ed., 2015, 54(48): 14721.

[9]

Joo Y. H., Shreeve J. M. J. Am. Chem. Soc., 2010, 132(42): 15081.

[10]

Chavez D. E., Parrish D., Preston D. N., Mares I. W. Propell. Explos. Pyrot., 2012, 37(6): 647.

[11]

Zhang H. H., Jia S. Y., Wang B. Z., Wang X. J., Zhou C., Lian W. P., Li J. Z. Chinese J. Expl. Propell., 2014, 37(2): 23.

[12]

Jin X. H., Hu B. C., Liu Z. L., Lv C. X. Chinese J. Expl. Propell., 2014, 37(2): 18.

[13]

Wang R. H., Xu H. Y., Guo Y., Sa R. J., Shreeve J. M. J. Am. Chem. Soc., 2010, 132(34): 11904.

[14]

Thottempudi V., Shreeve J. M. J. Am. Chem. Soc., 2011, 133(49): 19982.

[15]

Marcus H. J. Tetrazine Compounds, 1966.

[16]

Talawar M. B., Sivabalan R., Senthilkumar N., Prabhu G., Asthana S. N. J. Hazard. Mater., 2004, 113(1): 11.

[17]

Hu Y., Ma H. X., Li J. F., Gao R., Song J. R. B. Korean Chem. Soc., 2010, 31(10): 2897.

[18]

Feng J. L., Zhang J. G., Wang K., Zhang T. L. Chem. J. Chinese Universities, 2011, 32(7): 1519.

[19]

Xu K. Z., Zhao F. Q., Ren Y. H., Ma H. X., Song J. R., Hu R. Z. Acta Phys-Chim. Sin., 2009, 25(2): 309.

[20]

Chavez D. E., Hiskey M. A. J. Energ. Mater., 1999, 17(4): 357.

[21]

Oxley J. C., Smith J. L., Chen H. Thermochim. Acta, 2002, 384(1): 91.

[22]

Zhang J. G., Yin X., Wu J. T., Sun M., Feng J. L., Zhang T. L., Zhou Z. N. T. Chinese J. Inorg. Chem., 2013, 29(12): 2587.

[23]

Zhang H., Zhao F. Q., Yi J. H., Zhang X. H., Hu R. Z., Xu S. Y. Chinese J. Inorg. Chem., 2009, 25(5): 869.

[24]

Zhao F. Q., Zhang H., An T., Zhang X. H., Gao H. X., Song X. D. Chinese J. Energ. Mater., 2014, 22(5): 635.

[25]

Liu X. Y., Su Z. Y., Ji W. X., Chen S. P., Wei Q., Xie G., Yang X. W., Gao S. L. J. Phys. Chem. C, 2014, 118(41): 23487.

[26]

Ma H. X., Yan B., Li Z. N., Guan Y. L., Song J. R., Xu K. Z., Hu R. Z. J. Hazard. Mater., 2009.

[27]

Chavez D. E., Hiskey M. A. J. Heterocyclic. Chem., 1998, 35(6): 1329.

[28]

Sheldrick G. M. SHELXS 97, Program for Crystal Structure Solution, 1997.

[29]

Dolomanov O. V., Blake A. J., Champness N. R., Schröder M. J. Appl. Crystallogr., 2003, 36(5): 1283.

[30]

Kissinger H. E. Anal. Chem., 1957, 29(11): 1702.

[31]

Ozawa T. B. Chem. Soc. Jpn., 1965, 38(11): 1881.

[32]

Ma H. X., Yan B., Li Z. N., Song J. R., Hu R. Z. J. Therm. Anal. Calorim., 2009, 95(2): 437.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/