Synthesis and Properties of PGS-Li Scaffold

Zhihui Liu , Yadong Lu , Wei Feng , Junxing Yang , Shang Gao , Lijie Song , Yao Wang , Bowei Wang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 670 -675.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (4) : 670 -675. DOI: 10.1007/s40242-018-8164-4
Article

Synthesis and Properties of PGS-Li Scaffold

Author information +
History +
PDF

Abstract

Lithium ion-doped polyglycerol sebacate scaffold(PGS)-Li was synthesized by adding lithium ions to polyglycerol sebacate(PGS) during its crosslinking process due to the specific effects of lithium ions on periodontal ligament cells, cementoblasts and the eminent performance of PGS. The molecular mass, composition, structure, porosity, thermal properties, and hydrophilicity of the composite were characterized by gel permeation chromatography(GPC), Fourier transform infrared spectroscopy(FTIR), inductively coupled plasma optical emission spectrometer(ICP-OES), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), thermogravimetric analyzer(TGA) and contact angle measurments, and the degradation of the material was evaluated by in vitro degradation experiments. The biological activity of PGS-Li scaffold was detected by calcein-AM staining and cytotoxicity test. The results indicate that PGS-Li scaffold has been successfully synthesized, which has similar composition and structure to PGS, but slightly larger molecular weight. In addition, the porosity and pore size of PGS-Li scaffold basically meet the requirements of engineering scaffold materials and the seaffold shows better performance in terms of hydrophilicity and thermal stability than PGS. In vitro degradation experimental results show that the degradation rate of PGS-Li scaffold is higher than that of PGS. What’s more, the results of cytotoxicity test and cell staining show that there is no significant difference in the proliferation and cell morphology of cementoblasts.

Keywords

Lithium / Polyglycerol sebacate(PGS) / Tissue engineering / Dental cementum

Cite this article

Download citation ▾
Zhihui Liu, Yadong Lu, Wei Feng, Junxing Yang, Shang Gao, Lijie Song, Yao Wang, Bowei Wang. Synthesis and Properties of PGS-Li Scaffold. Chemical Research in Chinese Universities, 2018, 34(4): 670-675 DOI:10.1007/s40242-018-8164-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bosshardt D. D. Journal of Dental Research, 2005, 84(5): 390.

[2]

Billström G. H., Blom A. W., Larsson S., Beswick A. D. Injury―International Journal of the Care of the Injured, 2013.

[3]

Wagoner J. A. J., Herschler B. A. Acta Biomaterialia, 2011, 7(1): 16.

[4]

Sun Z. J., Sun C. W., Sun B., Lu X. L., Dong D. L. J. Biomater. Sci. Polym. Ed., 2012, 23(6): 833.

[5]

Tamayol A., Hassani N. A., Mostafalu P., Yetisen A. K., Commotto M., Aldhahri M., Abdel-Wahab M. S., Najafabadi Z. I., Latifi S., Akbari M., Annabi N., Yun S. H., Memic A., Dokmeci M. R., Khademhosseini A. Sci. Rep., 2017, 7(1): 9220.

[6]

Wang Y., Ameer G. A., Sheppard B. J., Langer R. Nature Biotechnology, 2002, 20(6): 602.

[7]

Zaky S. H., Lee K. W., Gao J., Jensen A., Close J., Wang Y. D., Almarza A. J., Sfeir C. Tissue Engineering Part A, 2014, 20(1/2): 45.

[8]

Yan Y., Sencadas V., Jin T., Huang X., Chen J., Wei D., Jiang Z. Journal of Colloid & Interface Science, 2017, 508: 87.

[9]

Lee S. H., Lee K. W., Gade P. S., Robertson A. M., Wang Y. J. Biomater. Sci. Polym. Ed., 2017, 16: 1.

[10]

Crapo P. M., Gao J., Wang Y. Journal of Biomedical Materials Research Part A, 2010, 86A: 354.

[11]

Souza M. T., Tansaz S., Zanotto E. D., Boccaccini A. R. Materials, 2017, 10(1): 83.

[12]

Zaky S. H., Hangadora C. K., Tudares M. A., Gao J., Jensen A., Wang Y., Sfeir C., Almarza A. J. Biomed. Mater., 2014, 9(2): 025003.

[13]

Lee K. W., Wang Y. J. Vis. Exp., 2011, 50(50): 761.

[14]

Lim W. H., Liu B., Mah S. J., Yin X., Helms J. A. Journal of Periodontology, 2014, 86(2): 319.

[15]

Ren Y., Han X., Ho S. P., Harris S. E., Cao Z., Economides A. N., Qin C., Ke H., Liu M., Feng J. Q. Faseb. Journal, 2015, 29(7): 2702.

[16]

Wang Y., Gao S., Jiang H., Lin P., Bao X., Zhang Z., Hu M. Exp. Ther. Med., 2014, 7(2): 468.

[17]

Gao S., Wang Y., Wang X., Lin P., Hu M. Exp. Ther. Med., 2015, 9(4): 1277.

[18]

Chen X., Hu C., Wang G., Li L., Kong X., Ding Y., Jin Y. Cell Death & Disease, 2013, 4(2): e510.

[19]

Briolay A., Lencel P., Bessueille L., Caverzasio J., Buchet R., Magne D. Biochemical and Biophysical Research Communications, 2013, 430(3): 1072.

[20]

Pomerantseva I., Krebs N., Hart A., Neville C. M., Huang A. Y., Sundback C. A. J. Biomed. Mater. Res. A, 2009, 91(4): 1038.

[21]

Li W. B. The Study for Fabrication, Characterization and Biocompatibility of Non-linear Biodegradable Poly(glycerol sebacate) Elastomer, 2014.

[22]

Cong Y. J., Song M. Chinese Journal of Tissue Engineering Research, 2014, 18(30): 4889.

[23]

Liang J. H., Li R. Y., Liu G. C., Qin Y. G. Chinese Journal of Tissue Engineering Research, 2017, 21(15): 2410.

[24]

Shirazaki P., Varshosaz J., Kharazi A. Z. Adv. Biomed. Res., 2017, 6(1): 105.

[25]

Wu J. B. Preparation and Simulation of Zinc Doped Hydroxyapatite Compounds(Polylactic Acid or Graphene), 2017.

[26]

Zhang Z. R. A Research on the Performance of SF/COL/P(LLA-CL) Electrospun Three-dimensional Nanofiber Scaffold, 2013.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/